CACTVS Tel Scripting Introduction

CACTVS Tcl Scripting Introduction

Script Interpreter Programs

The standard distribution of the toolkit contains a number of standard application scripts, and two
general-purpose interpreters for the execution of custom scripts.

Start scripts

When the setup program is executed, a number of start scripts named cs?? are generated. The prefix
cs is the abbreviation for CAcTvs System, and the final two or three letters are a short mnemonic form
of the application, such as br for structure browser, or tb for table builder. Most of these start scripts
execute a predefined script, but two of them are general-purpose interpreters which can be fed with
any script.

On Unix, these start scripts are short shell scripts which set up a number of environment variables
and then start one of two general-purpose chemistry interpreters. One of these is tclcactvs, the other
tkcactvs. The only difference in functionality is that the latter includes the Tk platform-independent
GUTI toolkit. In principle, it is also possible to start with a plain fc/cactvs, and then load Tk as a toolkit
at run-time.

On MS Windows, the cs?? files are short-cuts which start tclcactvs or tkcactvs with the application
script file directly. On Windows, path information is extracted from the registry, so no environment
set-up is required.

This is a sample start script for the generic GUI-less script interpreter csts:
#! /bin/sh

TK_LIBRARY=/usr/local/lib/cactvs/tk8.2

TCL LIBRARY=/usr/local/lib/cactvs/tcl8.2

TKX_ LIBRARY=/usr/local/lib/cactvs/tkx8.2
TCLX_LIBRARY=/usr/local/lib/cactvs/tclx8.2

BLT LIBRARY=/usr/local/lib/cactvs/blt2.4

TIX LIBRARY=/usr/local/lib/cactvs/tix4.1

O0S="Linux2.4"

CACTVS_DATA DIRECTORY=/usr/local/lib/cactvs

PATH=$CACTVSiDATAiDIRECTORY : $PATH

LD LIBRARY PATH=/usr/local/lib/cactvs/lib:SLD_LIBRARY PATH

LD LIBRARYN32 PATH=/usr/local/lib/cactvs/lib:$LD LIBRARYN32 PATH

export LD_LIBRARY PATH LD_LIBRARYN32_PATH TKX_LIBRARY TCLX LIBRARY

export TK LIBRARY TCL LIBRARY BLT LIBRARY TIX LIBRARY OS CACTVS_ DATA DIRECTORY
PGM=/usr/local/lib/cactvs/lib/tclcactvs

exec $PGM -b -d "s@"

The generic multi-platform version of this script which is part of the development distributions
looks slightly more difficult, but does essentially the same. That script version determines the
operating system version at runtime by analysing uname command output, and compensates for
incompatibilities between SuSE and RedHat C++ runtime library naming conventions. The uname
output analysis in the generic version looks complicated because it distinguishes between Linux on
1386 and Alpha processor architectures, which are not trivial to keep apart from its messages.

If the environment variables are already set up appropriately, the start scripts are not needed and the
central program tclcactvs and tkcactvs may be started directly.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 1

CACTVS Tcl Scripting Introduction

Environment variables
The following environment variables are used by the CAcTvs system:

° BLT LIBRARY Path to the BLT runtime script library. Usually, it is a subdirectory of the
$CACTVS_DATA DIRECTORY directory. BLT is an extension module for
the TK toolkit. All standard GUI applications included with the toolkit
use this package, for example for the drag&drop functionality. This
variable is only used by Tk-enabled interpreter versions. BLT is not
compiled into the tkcactvs application, but loaded as a package on
demand.

° CACTVS_DATA DIRECTORY The variable stores the path to the directory which contains the
CacTvs script libraries and other directories with critical runtime
information. In standard customer installations, this is the base library
installation directory, for example /usr/local/lib/cactvs.

° 1p_LIBRARY PATH This variable is not used by the toolkit directly, but nevertheless very
important because the toolkit is very modular, and many programs such
as tkcactvs depend on a dozen or more dynamic libraries. The standard
start-up scripts will prefix the library path with the location of the
runtime libraries. On IRIX systems, the variable LD_LIBRARYN32_ PATH
is also important. The toolkit libraries and executables are compiled in
n32 format on all IRIX releases which support this linker format.

° 0s The operating system. This variable will actually be re-exported by the
initialization routine if it is not set. This variable is used as a path
component in various CAcTvs extension modules search paths in
multi-platform installations. Setting this variable is optional, since it
will be automatically generated if necessary. The syntax of this variable
is the basic OS name as reported by the uname command, followed by
its version, followed by the processor class if it is not the standard class.
Examples of valid values are SunOS35.10-64 (not Solaris something),
and Linux2.6. On Windows, the generic OS name is WIN32.

° PATH This is the standard search path for executables. The start scripts will
prefix the path with the directory where the executable programs of the
toolkit are stored. Indirectly, this variable is used whenever an external
executable is started by a script, or directly by the core toolkit code. The
latter happens for example when I/O to or from pipes is performed, or
when reading compressed structure files. An up-to-date gzip program
should be installed on the system in a location contained in the PATH in
order to enable input of structure files in standard compression formats.

° TCL_LIBRARY Path to the Tcl runtime script library. Usually, it is a subdirectory of the
$CACTVS_DATA DIRECTORY directory.

° TCLX LIBRARY Path to the TclX runtime script library. Usually, it is a subdirectory of the
$CACTVS_DATA_DIRECTORY directory. The TclX Tcl extension module is
a compiled-in component of all Tcl-enabled toolkit versions. It is
essential because it for example provides the functions for the encoding
and decoding of object handles.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

° TIX LIBRARY Path to the Tix runtime script library. Usually, it is a subdirectory of the
$CACTVS_DATA DIRECTORY directory. Tix is another extension for the Tk
GUI toolkit. It is used by some of the GUI application scripts, such as
the structure browser csbr. However, not all GUI applications rely on
this extension module. This variable is only used by Tk-enabled
interpreter versions, and only of the Tix package has been loaded. Tix is
not compiled into the tkcactvs application, but loaded as a package on
demand.

° TK_LIBRARY Path to the Tk runtime script library. Usually, it is a subdirectory of the
$ directory. This variable is only used by Tk-enabled interpreter
versions.

Stand-alone applications

The compilation environment of the toolkit supports the compilation of stand-alone executables. In
these executables, the application script, all runtime libraries, script libraries, extra property
definitions and toolkit extension modules are collected and linked into a big static executable. In
addition, the dynamic extension capabilities of the toolkit are disabled in these programs, so that
they will never attempt to load additional functionality from modules or description files.

These stand-alone applications do not access any environment variables, and the only installation
procedure required is to move them into a standard binary directory, such as /usr/local/bin.

From a user standpoint, stand-alone executables and application scripts started via a start script and
backed by a full toolkit installation are supposed to be indistinguishable. The only notable difference
is the behaviour in case unknown data is encountered, where the toolkit version will go through its
procedure of automatic extension look-up and loading, while the stand-alone versions will not.
Given a suitable set of additional property definition and extension modules compiled into the
stand-alone versions, these programs have no need not have to refer to automatic loading of extra
modules and their behaviour is indeed identical to the script version.

Encrypted scripts

It is possible to distributed confidential scripts and open scripts in the same environment. The script
interpreters contain a compiled-in and usually customer-specific key which can be used to run
encrypted scripts.

Encrypted scripts can be generated from a standard readable Tcl or Tk script by performing an RC4
encoding:

rc4 the key <plain script.tcl >enc script.rc4

The encrypted script may be run on interpreters which have the same key by setting the -x option:

tclcactvs -x -f enc script.rcd

Keys may also be set by providing a digitally signed license.dat file as part of a distribution. This
file overrides the standard license settings, including the decryption key.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 3

CACTVS Tcl Scripting Introduction

CACTVS as generic Tcl extension module

The standard CAcTvs script interpreters contain the Tcl scripting language interface as a compiled-in
component.

However, it is also possible to compile the CAcTvs toolkit libraries without the main Tcl/Tk libraries,
but still with Tel scripting support. The basic toolkit library may then be loaded into any program
which uses a Tcl interpreter as a Tcl module, similar to the way CActvs uses the Tix and BLT
extension modules. After loading, the Tcl extensions provided by CAcTvs are available in the host
application as additional commands. Since CacTvs does not know anything about the internal data
structures of the host application, there will be no built-in mechanisms for direct interfacing with the
host application data structures. However, data exchange on the Tcl level (such as passing a SMILES
string which was generated by CAcTvs commands) into a host application command is possible and
useful.

Examples:
package require Cactvs

load /the/path/libcactvs.so

This are two methods to load the Cactvs library into a host application. The first example requires
a suitable set-up of the host application pkglndex.tcl file which contains the path information to the
shared libraries of available extension modules. The second example is a direct load. In both cases,
the environment variables which can influence the operation of the toolkit must have been set-up

properly, especially the cacTvs DATA DIRECTORY variable.

In both cases, Tclx must be available as a module for the host application, or compiled into it. The
Tcl scripting capabilities of CAcTvs depend on this extension. When the cactvs subsystem is
initialized, an attempt will be made to load the Tclx package. If it was compiled in, or loaded into
the host application before the CAcTvs module as accessed, this will automatically succeed.
Otherwise, the Tcl library will try to locate this package via its current package path. The best
method to ensure that it is found is therefore to enter the load data for the Tclx package into the host
application pkgindex.tcl file if the host application does not already contain it as a compiled-in
component.

This approach works with a number of different applications, starting with a plain Tclx interpreter
(usually named #c/ as executable file), via the Tcl Web browser plug-in to large packages such as the
VMD visualization and modelling suite.

Toolkit libraries without Tcl scripting language support

Versions of the cactvs toolkit are available which do not contain Tcl scripting language support.
Since the core library and the scripting language environment are implemented as clearly separate
layers, the removal of the scripting language layer (and potentially its replacement by other language
bindings) is relatively painless.

A toolkit library without scripting language support must be programmed by calling C functions.
The most important C functions for interfacing are described in a separate library programming
document.

Examples for this kind of libraries are DLLs or shared object libraries based on the Cactvs toolkit
which provide reduced, specialized functionality, for example for structure depiction or substructure

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

searching. Generally, these libraries include all functionality, such as property definitions and
modules, as compiled-in components and do not require any environment set-up or loading of
additional modules.

Interpreter program options

Both the standard script interpreter tc/cactvs and the GUI-enabled variant tkcactvs understand a
number of options which can be used to modify the script execution.

For tclcactvs, these are:

!

-<inputdirs

>outputdirs

-cemd

-Csecs

-fscriptfile

-Fscriptfile

Enable structure security. If this flag is set, structure and reaction
information will not be sent over the Internet for computations which
invoke external Web services. For academic distributions, this flag is off
by default. Commercial packages have it enabled by default.

A colon-separated list of directories where the application is allowed to
read files. If this option is used, toolkit commands which open files for
input outside the restricted directory set will raise an error.

A colon-separated list of directories where the application is allowed to
write files. If this option is used, toolkit commands which open files for
output outside the restricted directory set will raise an error.

If set, the application writes a csconfig.xml file with the currently
configured program set-up on exit.

Remove all compiled-in paths from the search paths for extension
modules which are dependent on the build environment.

Execute the specified command and exit immediately afterwards.
Set a CPU time execution limit. By default, no such limit is enforced.

Allow the loading of dynamic extensions. By default, only dynamic
extension loading from trusted locations, such as the installation
directory, are allowed. With this option, additional privately
configurable locations which are not in the trusted path will be checked
if an extension cannot be found in a standard location.

Similar to option -d, but with this option the additional non-trusted
private locations will be searched before those in the standard path.

Run scripts with command tracing. Equivalent to executing cmdtrace
on as first script command.

Execute the script file. When the script finishes, the program exits. By
default, if neither the -f, -, or -u options are set, an interactive command
line interpreter is started.

Secondary script file sent to the interpreter of the language not executing
the primary script (i.e. this would be a Python script if the primary script
is TcL. and vice versa).

Xemistry GmbH © 2002-2024

Cactvs Tecl Scripting Introduction

CACTVS Tcl Scripting Introduction

° -h Print short option help text and exit.

e -i0/1/2 Control Internet access. Level 0 disables all automatic Internet look-up.
Level one allows this in computational modules and file I/O modules,
but this is further subject to the settings of the host control variables and
the structure security flag. Level two enables Internet look-up also for
property definitions and modules from Internet sources listed in the
search paths. The default level is one. If the level is zero, all Internet host
control variables will also be reset to NULL, so that even increasing the
look-up level value in a script will not directly re-enable Internet
look-ups without also re-initializing the host variables.

LS| If set, enable readline support on interactive shells. This option is not
supported on Windows.
° -k Run a KNIME node /O background thread on the default port 16570.

o -Kport,maxtime,maxrowstotal,maxrowsperport,maxfilesize,user,password,rpclogfile
Run a KNIME node I/O background thread with the specified options.
Empty individual parameters (i.e. no text between two commas) are
skipped and do not set empty or zero values.

-1 configfile/configdir
Add a custom directory location or file to the start-up configuration
processing. The custom file is processed last and its contents supersede
configuration parameters set in other configuration files. If a directory
name is used, the configuration file is expected to be named csconfig or
.csconfig. Configuration files are searched, in this order, in the
installation base directory, the user home directory, the current directory
at start-up time (possibly modified by a -w option) and finally, if
specified, the custom location.

° -Lurn Define local URN namespace.

o -Mlimit Specify the maximum amount of memory to be used. The argument is
an integer, optionally with a ‘K’ or ‘M’ suffix to indicate kilobytes or
megabytes, respectively. By default, no memory limit is enforced.

° -N If the program is running as a compute server, do not fork () the
program for the processing of the request. Instead, further requests are
blocked until the current request has been finished.

° -0 Use pre-resolved object pointers in TcL value objects. This option can
speed up scripts with lots of minor object references by up to 20%, but
it will have subtle effects on the re-use of object handle names etc. In
general, it is a safe option and most scripts will work without any change
under this execution model. However, implicit assumptions about object
naming schemes valid for standard scripts may no longer be guaranteed,
and there is a risk of breaking code which is not cleanly written.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

-Oobjlimit

-pport

-spropertylist

-Sid

-tvalue

-uurl!

-Uusername

-v
-Vid

-wdir

CACTVS Tel Scripting Introduction

Set an chemistry object limit. If the number of active chemistry major
objects in the application exceeds this number at any time, the program
is terminated, presumably before it starts excessive swapping. By
default, no object limit is enforced.

Set RPC server port. Only ports beyond 1023 (the reserved space) are
allowed.

If set, the main interpreter is forced to be a Python interpreter. By default
the main interpreter type is defined by the suffix of the primary script,
or the name of the executable if no script is processed.

Quick start-up without the loading of any extension modules.

Allow the processing of RPC requests, in addition to script execution or
the interactive command line.

Configure for the exclusive processing of RPC or KNIME node server
requests. Do not attempt to run a script or to start with a command line.

Configure to act as a compute server for the properties in the list
(comma-separated). Only base property names following the CAcTvs
nomenclature are allowed, no subfields or original names. This option
alone will not yet make the interpreter running as a server. It will only
work if the -7 or -R options are added. Property computation requests for
properties which are not in the list will be rejected, as well as requests
which fail the remote access check encoded as part of the property
definition.

Set the RPC service ID. This is an expert debugging feature.

Activate subsystem traces. The option value is an unsigned integer.
Every set bit in this number activates the tracing of a different
subsystem, which are linked to a different bit position. The subsystems
are listed below. Trace output is written to the stderr channel on Unix,
and uses the ATLTRACE functions on Windows.

Disabled all computation or query time-out and signal processing. This
is primarily useful when analysing the interpreter with a debugger and
source code access.

Execute a script which is downloaded from a URL. Currently, the toolkit
understands HTTP, FTP, Gopher and FILE URLs.

Run the program and script as the named user and in its primary group.
This will only work if the program is started as root, and only on Unix.

Print software version and licensing information and then exit.
Set the RPC program version. This is an expert debugging feature.

Change the working directory of the program to the specified directory
before any scripts are executed.

Xemistry GmbH © 2002-2024

Cactvs Tecl Scripting Introduction

CACTVS Tcl Scripting Introduction

° X Assume script file is encrypted and use compiled-in key to decode it
transparently in memory when it is executed.

° -znsecs Sleep a number of seconds before commencing script and RPC-type
operations. This is primarily useful for debugging, for example for
attaching a debugger to a running toolkit process.

o -Zcertfile[keyfile] Specify SSL server certificate and key files in PEM format. These are
only needed when operating as a KNIME node server with support for
encrypted communication. If no separate key file is specified, it is
assumed to reside in the same directory as the certificate file, with the
same base file name, but with suffix .key. If this parameter is not used,
and the installed package contains a knime subdirectory, the default
localhost certificate and key found in that directory are automatically
configured.

These options can be used both with the standard start script csts as with the raw tclcactvs
application. To distinguish between standard interpreter options and application options, the option
separator -- can be used. Everything after this separator is passed as application options.

Example:

csts -g -f myscript.tcl -- -g myscript.dat

If called like this, the first -g will be consumed and used as an interpreter option, as is the -f
specification, while the second -¢q parameter is passed to the script environment. For the script, the
program arguments, which are stored in the standard global Tcl list variable argv, seem to consist
of only two list elements with values “-¢” and “myscript.dat”, which are read from the argument list
after the separator.

The arguments of options which require additional information, such as a file name, may be
specified with or without a white space separator between the option character and the argument.
Multiple option characters without arguments may be merged, for example as

csts -gfmyscript.tcl -- -g myscript.dat
which is completely equivalent to the sample line above.
The tkcactvs program options a little bit more limited:

e -console Start a console window for controlling the main interpreter in a separate
window. On Windows, this happens automatically if the program is
started without a script. On Unix, the program displays a command line
prompt in the start shell if not run with a script via the -f or -u options.

° —crypt Corresponds to option -x of tclcactvs interpreter.
e -dynload Corresponds to option -d of fclcactvs interpreter.
o -file file Corresponds to option -f'of tclcactvs interpreter.
° -internet Corresponds to option -i of tclcactvs interpreter.
e -quick Corresponds to option -q of tclcactvs interpreter.
° -namespace ns Corresponds to option -L of tclcactvs interpreter.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

-nobuildpath
-norpc
-trace bits

-slave

-url url

-wrapper name

CACTVS Tel Scripting Introduction

Corresponds to option -b of tclcactvs interpreter.
The inverse of option -r of tclcactvs interpreter.
Corresponds to option -¢ of tclcactvs interpreter.

Install a fully chemistry-enabled slave interpreter of the main
interpreter. This is required for the editing of property computation
scripts in the property editor cspe.

Corresponds to option -u of tclcactvs interpreter.

Pass the name of a wrapper program which was used to invoke the
interpreter.

In this application, the standard Tk argument parsing routines are used. Therefore, it is possible to
abbreviate the full option name to the shortest unique part. For example, using -fis equivalent to the
full option name -file. This application also understands the -- option list separator.

Codes for traceable subsystems

These are the codes for traceable subsystems. Multiple subsystems can be traced in parallel by
summing up the codes and using this number for the -t (¢zclcactvs) or -trace (tkcactvs) program
options:

(1<<0)
(1<<1)
(1<<2)
(1<<3)
(1<<4)
(1<<5)
(1<<6)
(1<<7)
(1<<8)
(1<<9)
(1<<10)
(1<<11)
(1<<12)
(1<<13)
(1<<14)
(1<<15)
(1<<16)
(1<<17)
(1<<18)
(1<<19)
(1<<20)

RPC communication

General property calculation

System initialization

Binary I/O of native Cactvs formats
Filter processing

Database operations

File I/O

Stereochemistry

Aromaticity resolution

Object deletion

Connectivity generation from 3D coordinates
Client/server based property computation
Basic ring system analysis

Radical resolver

Path walking

Charge resolver

Substructure matching

Table operations

2D layout coordinate generation

File query operations

Tree walking

Xemistry GmbH © 2002-2024

Cactvs Tcl Scripting Introduction 9

CACTVS Tel Scripting Introduction

° (1<<21) Native cactvs structure/reaction database queries
o (1<<22) Extended ring sets

o (1<<23) 3D substructure match operations

o (1<<24) Hydrogen addition and removal

o (1<<25) Structure hash code computation

o (1<<26) Timing and time-outs

° (1<<27) SMILES/SMARTS decoder

o (1<<28) Temporary debugging

° (1<<29) Dynamic extension module loading
° (1<<30) Query parsing and execution

° (1<<31) Reaction processing

Registry entries on Windows

When the toolkit is installed on Windows, the registry entries listed in the table are set in
HEKY_LOCAL MACHINE. {app} is a place holder for the application installation directory. These
registry settings associate the file suffixes .zc/ with tclcactvs.exe and .tk with tkcactvs.exe.
Stand-alone applications and special-purpose DLL libraries do not create registry entries, nor do

they depend on them.

Path Name Value
Software\Xemistry

Software\Xemistry\CACTVS basedir {app}
Software\Xemistry\CACTVS blt library | {app}\blt3.0
Software\Xemistry\CACTVS datadir {app}
Software\Xemistry\CACTVS tcl library | {app}\tcI8.6
Software\Xemistry\CACTVS telx_library | {app}\tclx8.4
Software\Xemistry\CACTVS tix_library | {app}\tix8.4
Software\Xemistry\CACTVS tk_library {app}\tk8.6
Software\CLASSES\.tcl tclFile
Software\CLASSES\.tk tkFile

Software\CLASSES\tclfile

Software\CLASSES\tclfile\Defaultlcon

Software\CLASSES\tclfile\Shell

Software\CLASSES\tclfile\Shel\Open

Software\CLASSES\tclfile\Shel\Open\Command

“{app}\lib\tclcactvs.exe" -f %1 -- %s

Software\CLASSES\tkfile

Software\CLASSES\tkfile\DefaultIlcon

Xemistry GmbH © 2002-2024

CACTYVS Tl Scripting Introduction

Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

Software\CLASSES\tkfile\Shell

Software\CLASSES\tkfile\Shell\Open

Software\CLASSES\tkfile\Shell\Open\Command

“{app}\lib\tkcactvs.exe" -f %1 -- %os

Standard Tcl and Tk Packages

CAcCTVs uses in its script interpreters and application scripts a number of auxiliary Tcl and Tk
packages, which are also part of the standard distributions. In addition, any other Tcl or Tk package
from third parties may be loaded into a cactvs interpreter by the native Tcl mechanism (1oad and

package commands).

This is the list of currently used packages:

Package Description Use in tclcactvs Use in tkcactvs
Gd 2.0 Tk extension - pixel Loadable as package Used by csimg sample
image generation module application. This Gd
package is significantly
extended compared to the
standard Gd package.
Gdbm 1.10 GDBM file support Loadable as package Loadable as package
module
Itcl 3.4 Object-oriented Tcl Compiled-in Compiled-in
extension
Itk 3.4 Object-oriented Tk Loadable as package Compiled-in
extension
Ldap1.0 Tcl module - Loadable as package Loadable as package
communication with
LDAP servers
Tc ToKYOCABINET file Loadable as package Loadable as package
support module
Tel 8.6.1 Core Tcl scripting Compiled-in Compiled-in
language interpreter
TclBIt3.0 Tcl extension - various Loadable as package Automatically loaded as
additional functions package by standard
start-up script
TclReadline 2.1.0 Interactive readline Loadable package, Loadable package
command line support automatically loaded
when Tcl interpreter is
started with -I option
TclX 8.4 Tcl extension, provides Compiled-in Compiled-in
object handle
functionality

Xemistry GmbH © 2002-2024

Cactvs Tecl Scripting Introduction

11

CACTVS Tel Scripting Introduction

Thread 2.7.0 Tcl thread package Compiled-in in some Compiled-in in some
interpreter versions, interpreter versions,
loadable module in others. | loadable module in others
Automatically loaded
when commands such as
dataset addthread
are executed.

Tix 8.4 Tk extension - various Loadable as package Loaded by some

additional widgets application scripts as
package

Tk 8.6.1 Core Tk GUI toolkit Loadable as package Compiled-in

package
TkBIt3.0 Tk extension - various Loadable as package Automatically loaded as
additional widgets, drag package by standard
& drop start-up script
Tktable 2.10 Tk extension - table Loadable as package Used by QSAR table
widget application csqt, loaded as
package

Major Object Commands

Most of the toolkit functionality is linked to a small collection of objects, providing means to

manipulate data and structure of these objects. The core set of objects are called major objects.

Major objects may carry property data, and they may control minor objects, which cannot exist

without a controlling major object. A major object is addressed in the scripting language

environment by its handle.

The Cactvs toolkit currently supports the following major chemistry objects in its standard edition:
° ens molecular ensembles

* reaction reactions, consisting of reagent and product ensembles, and optionally also
solvents, catalysts, etc.

* molfile chemical structure files of any type, not just MDL Molfiles
* table data tables, optionally associated with ensembles or reactions
* dataset datasetusually consisting of of ensembles or reactions, but can also hold networks

and tables

* network universal graph object with nodes and connections for the modelling of complex
data relationships

Each object class is associated with a Tcl command which implements the scriptable functionality
the object class supports. The name of the command is the same as the object class it represents. The
general structure of these commands is

objecttype subcommand objecthandle ?args?

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

When they are created, major objects are automatically assigned an object handle, which is a short
identifier string. The identifier starts with the name of the object class, followed by a number.

Example: ens0 is an ensemble handle.

When an object is destroyed, its handle becomes invalid, and their use will result in an error.
However, object handles will be reused in an unpredictable fashion if new objects are created.

Example:

set ehandle [ens create CCC]
ens delete S$ehandle

will first create an ensemble object from a SMILES string, and then delete it, showing the generic
command syntax for major object commands.

Minor Object Commands

Major objects may contain minor objects. Minor objects are also chemistry objects, but they do not
have their own handle. They do not exist outside the context of a major object.

Minor objects are usually identified by a combination of their major object handles and a numeric
label. For each minor object class, a default label property exists. Its name is the standard object
class property prefix, followed by LABEL.

Examples:

A LABEL, M LABEL, G LABEL, V LABEL
Standard minor objects are:

e atom - subobject of ensembles

* bond - subobject of ensembles

e connection - subobject of networks

* group - subobject of ensembles (arbitrary collection of atoms, also recursively including
other groups)

* mol - subobject of ensembles

* pi - subobject of ensembles (7 system)

* ring - subobject of ensembles

* ringsystem - subobject of ensembles

e sigma - subobject of ensembles (o bond system)

 surface - subobject of ensembles (surface elements, optionally related to atom)
* vertex - subobject of networks

Each minor object has a command which is associated with it. The name of the command is the same
as the object class.

Examples for these commands:

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 13

CACTVS Tcl Scripting Introduction

atom get Sehandle 1 A ELEMENT
bond atoms S$ehandle 2

Not all subobject classes may be present at all times for any major object. For example, if no ring
information was ever used during the history of an ensemble, the ring subobject list will not have
been initialized. Whenever a property which is associated with a given type of subobject is
requested, the system will check if the subobject class has been set up for the controlling major
object and attempt to set it up.

Example:
ens get $ehandle R SIZE

may automatically invoke the determination of ring systems if they have not yet been set up. For
some subobject classes, for which no computational procedure exists (such as group), the
initialization will set up an empty list. Automatic non-void set-up routines exist for rings,
ringsystems, molecules, bonds, 7 systems and ¢ systems. In the case of bonds, an attempt will be
made to reconstruct a bonding scheme from atomic 3D coordinates, if these are available.

Subobjects may be individually created and discarded. For some cases, such as groups, atoms, or
bands, this makes sense. For rings, molecules, etc. this is likely to interfere with the system
operations.

Subobject manipulations will have effects on the status of other subobject sets on the same major
object. For example, the deletion of a ring atom will remove all groups where the atom was a
member, and totally destroy all ring and ringsystem information.Introduction to Properties

Data on chemical objects is stored as property data. Every data item is associated with a property
description. Property descriptions may be built-in, loaded from standard installation locations,
(depending on the set-up) loaded from Internet sources and databases, or generated ad-hoc by
scripting language commands.

CacTvs does not distinguish between built-in property descriptions or those from any other source.
It has no fixed data structure for chemical objects, such as a standard set of properties it maintains.
For the system, it does not matter if at any given time element information on atoms is stored as a
periodic system number, an element symbol, or both. Any property data may be requested at any
time. The system will try to find a way to compute the requested data from what is already known
about the system by looking at the property definitions and associated computational methods.

Every property is associated with a specific object class - major or minor. Data for this property can
only be attached to objects matching that class. The object class a property is related to can be
decoded from its initial character. These are the prefixes for the most common object classes:

° A atoms (of ensembles)

* B bonds (of ensembles)
°C_ connections (of networks)
* D datasets

° E_ ensembles

°F structure files

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

° G groups (of ensembles)

° M molecules (of ensembles)

°* N networks

° 0 surface elements (of ensembles, mnemonic: German Oberfliche means surface)

° P 7 systems (of ensembles)

° R rings (of ensembles)

° s o systems (of ensembles)

° T tables

° v vertices (of networks)

° X reactions

° vy ringsystems (of ensembles)

e Z table cell data (internal use only)
Examples:

A_LABEL Atom property

X_IDENT Reaction property

Property data on minor objects is always maintained and updated as a block.
Example:

Either all atoms in an ensemble have valid property data for o_symBoL, or none has.

Property Validity

Property data attach to an object will remain valid once it has been set until either
* The major object is destroyed
 Itis explicitly deleted, overwritten, or re-computed

* The major object undergoes a modification which renders the data invalid
Example: Atom deletion will delete molecule weight data. This applies also to major objects:
Many dataset properties will probably become invalidated when an ensemble is removed
from a dataset.

* The values of another property at the same major object change and that property has been
listed as input data for the property considered.
Example: If the molecular weight M_weIGHT changes, the ensemble weight E WEIGHT is
invalidated, since the £ WEIGHT property definition declares it is dependent on M weIGHT (all
it does in its computation routine is to sum up M _weIGHT for all molecules).

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 15

CACTVS Tcl Scripting Introduction

The behaviour of property data with respect to object or data modifications is part of their property
definition record. They may be completely oblivious to any such change, or very sensitive.

Hydrogen addition and removal with the standard commands is treated somewhat different from
normal atom and bond manipulation. Since it is assumed that the hydrogen removal is only done for
export purposes, to prepare the data for software which still uses the concept of implicit hydrogen
atoms, most properties, except those which were explicitly declared to be sensitive also to this
operation, will remain valid.

The library was designed to err on the side of caution with respect to the validity of data. Maintaining
a consistent data set under all circumstances is a high priority. In case an structure modification
operation would result in loss of data which should not happen, it is possible to lock existing
property data, or even all data on a specific subobject type on a major object. If locking is active,
none of the normal data consistency checks apply to the locked data.

In some cases, locking is inevitable because changing of property data can have cascading
irrevocable effects. For example, changing data in the property 2 searcHInFo will invalidate the
element symbols in o _syMBOL, because some pseudo atoms have specific symbol representations.
Invalidating 2 symBoL however will invalidate A ELEMENT, and now all atom element information
has been lost. In such cases, an essential property such as o ELEMENT should be requested and then
locked until the potentially cascading operation has been completed. For normal structure
operations the built-in consistency manager is a clear benefit, not a nuisance.

Property Naming

Property names in the Cactvs system follow a logical scheme.

* The first character is a prefix, which identifies the object class instances of property data are
attached to.
Example: £ NaME is an ensemble property.

* The prefix is separated by an underscore from the remainder of the name.

* The following sequence of letters, digits and underscores is the body of the name. Only
upper-case letters are allowed, and the underscore is the only acceptable punctuation
character.

* [fthe body of the property name is enclosed by a pair of asterisks, this is a synthetic property.
Synthetic properties are automatically generated under certain circumstances when data
needs to be captured, but no descriptor record for the property can be found. This happens
for example when reading SD-files with data fields which do not correspond to standard
CAcTvs properties. A synthetic property has only minimal set of information. In most cases,
not even the data type can be established reliably, so the data is stored in neutral form as
strings.

Example: £ *sDFIELD1~* is a synthetic property.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

* The next section which may be present is a pound/hash character, followed by a number. This
number is a property ID. Property IDs are a tool to avoid naming collisions. Property IDs
may not be generated by normal users defining their own properties. Rather, the idea is to
establish a central repository where properties are registered and assigned an unique ID. This
ID can be used to break collisions between properties with the same name.

Example: £ 1DENT#1 identifies the built-in system property £ IDENT and no other property
of the same name.

* Ifthe name of the property is followed by a percent character, this is a backup property. Some
property definitions contain flags which instruct the system to make a backup of the property
before it is changed. An example for such a a property are atom labels (2_12aBEL). When two
ensembles are merged, which often implies atom renumbering of the atoms of the second
ensemble in order to avoid collisions, the old labels of the second ensembles are saved in
property o 1ABELS. Backup properties are identical in all respects to the original property,
but they are by definition not computable, even if their originator property is.

* If the name of a property is followed by a slash and a number, this is multiple-instance
property data. The Cactvs system allows the storage of multiple sets of data of the same
property on any major object. The first instance of a property data may be identified by the
suffix /1 (as in E_NaME/1), but this is optional (a plain E_NaME selects precisely the same
instance). The number suffixes may be freely allocated. It is not required to have a sequence
without holes.

Example: £ 1rRsPECTRUM/ 3 selects the third IR spectrum.

* Some types of properties may be indexed. A property subfield is selected by attaching a
bracketed index identifier.
Examples: E TRSPECTRUM (INSTRUMENT) , E SCREEN (0)
An index may either be the internal field index, beginning with 0, or, if the fields have been
named, the field name. Field names must be specified in lower-case. All vector types and
compound types are indexible, but indexing capabilities are also provided by pseudo-vectors
(float pairs, etc.), string (word indexing), bit sets (bit indexing), blobs (single byte access)
and other data types.

» Starting with release 3.358, compound and compound vector properties which have fields
that are properties themselves may be accessed in a dot notation. Examples:

vertex get Snh $v V_ONTOLOGY TERM

vertex get $nh $v V_ONTOLOGY TERM (synonyms)

vertex get $nh $v V_ONTOLOGY TERM (synonyms.size)

vertex get $nh $v V_ONTOLOGY TERM (synonyms.7)

vertex get $nh $v V_ONTOLOGY TERM (synonyms.7.text)

vertex get $nh $v V_ONTOLOGY TERM (synonyms.7.dbxrefs.0.db)

Individual field elements of compound vectors may be accessed by a element.field notation.
This syntax can be used as part of a longer access chain, as shown above. Currently, the
maximum number of dot addressing elements that can be used in this syntax is five, the same
as shown in the last example.

* Do not use the colon character with a numeric identifier in a property name, such as
E_NAME: 2. This feature is reserved for future selection between multiple computation
functions associated with a single property definition and not yet officially supported.

All these property name elements may be combined, in the order listed.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 17

CACTVS Tcl Scripting Introduction

Example:

E_*SOMEDATA*/3 (5) will select the sixth word (index begins with 0, synthetic properties are
strings) from the third instance of the data associated with property E *soMEDATA*.

Various schemes exists which associate additional names with a property.

All property definitions have an attribute “original name”, which may be set to any string. In output
operations, CAcTtvs will generally use this name, if it is set, in preference to the internal system
property name. The original name is also used for property identification in input operations. If the
name of a data field in an input file matches an original name of a property description, the field data
is stored as data of the type and name identified by the matched descriptor record. In many contexts
(but not all) an original name may be used as a completely equivalent substitute to the system name
when referring to properties and property data. Note however, because there is no control on the used
character set, original names cannot be used for indexing, multiple-instance data and other
operations which require the parsing of the name into subfields.

Example:

prop set E IDENT origname Company ID

sets the original name of the built-in standard property £_1DENT to “Company ID”. If an SD file is
read afterwards which contains a data field “Company ID”, its data will be stored as property data
E_IDENT on the read ensemble.

Properties may also be aliased. A property alias is a redirection mechanism which tells the system
that, whenever a specific property name is used, it is substituted by another name. This mechanism
allows the convenient mapping of multiple property names as they might be occurring during a

processing sequence onto a common internal property. Redirections may happen in multiple steps.

Example:

prop alias E_IDENT E_NAME

If this alias is set up, £_1DENT will only be another name for £_nawmg, hiding the original definition
of £ 1DENT completely. The alias name however does not need to be an existing property name. It
may be any name which follows the property naming syntax. Aliases may be layered, i.e. an alias
may refer to another alias instead of an original property name, but the alias structure will contain
a reference to the original property and not to any intermediate alias name because aliases to the
property name are resolved when the command is executed.

Aliases can be removed with a command like

prop unalias E_IDENT

where the arguments are one or more alias names, not the original property names the aliases are
referring to (E_NAME in this example).

Some property value types do not allow the full range of field indexing for setting. Currently, the
predefined set of fields in property value types »_URL (such as hostname, port, protocol, etc.) and
P _DATE (such as year, hour, weekday) may only the read, but not set individually.

Object Identification

The standard methods for identifying objects have already been presented:

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

* Major objects are identified by their handle
Example: ens get ens0 E_NAME

* Minor objects are identified by a combination of a major object handle and an object label
Example: atom get ens0 1 A ELEMENT

However, the scripting language provides a number of additional methods for minor object
identification:

* Identification via backup labels. If a percent character is appended to the label, the label is
interpreted as referring to the backup label property. If backup label property data does not
exist, an error results.

Example: atom get ens0 1% A ELEMENT

* Identification via object list index. Prefixing a number if the pound/hash character implies
that the object is the nth object in the object list. The first list element has index 0.
Example: atom get ens0 #0 A ELEMENT

¢ Identification via property value comparison. Any property of the same object class
association type as the decoded object may be used in an equality comparison operation. The
label argument must be a list consisting of the property used for the comparison and the
property value. Note that in case a property value occurs more than once, only the first minor
object with the property value is found. The comparison value must be provided in a format
which can be decoded to the data type of the comparison property.
Example: atom get ens0 {A LABEL 1} A ELEMENT

* Bond, and only these, may also be identified by a list of the atoms participating in them.
Example: bond get ens0 {1 2} B ORDER gets the bond order of the bond between atoms
1 and 2. If no such bond exists, an error results.

The property definitions of the minor object label properties (»_LABEL, B LABEL, etc.) guarantee that
these properties remain valid under almost all circumstances. In case there should be no valid minor
object labelling at any time, a default labelling numbering the objects in their list in sequential order,
starting with 1, is generated.

Operations which potentially will result in a label renumbering, for example the merging of
ensembles, will save the values prior to renumbering as backup properties (A LABELS, etc.). These
backup properties can be used to access data in the new ensemble via saved labels from the old
un-merged ensemble.

Whenever labels are generated or minor objects are combined, the system will take care that the
primary minor object label values are without collisions.

Filters

Filters are objects which operate on chemical objects, but are not chemical objects themselves. They
are often used to select specific objects from larger object collections, for example atoms with
specific properties from the atom set of an ensemble.

Using filters for this kind of selection operation is efficient. Filters have significantly less
computational overhead than script commands which retrieve property data and compare it to some
values.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 19

CACTVS Tcl Scripting Introduction

The CacTvs system provides a convenient set of built-in filters. Additional filters can be created on
the fly, or existing filters be modified, by the filter command.

Filters are referred to by their name. By convention, filter names are simple, self-explanatory lower
case strings. However, this is not enforced - filter names may contain blanks and use arbitrary
characters.

If a name of a filter is used which is not yet loaded into the system, the toolkit will attempt to find
a filter definition file in the filter search path. A filter definition file is an ASCII file which contains
keyword/values pairs describing the internal set-up of the filter. The file name is the name of the
filter, with a suffix .fil. Filter definition files are usually created by using a filter definition manager,
or by generating them by a script and dumping the filter to a file by a script command. If a filter name
cannot be resolved, an error is raised.

In its simplest form, a filter consists of a property name, a comparison value, and a comparison
operator. For example, the statement

filter create carbon property A ELEMENT valuel 6 operator eq

defines a simple filter which will check whether the object data for property 2 ELEMENT is equal to
six. This filter, when applied to a set of atoms, will only let carbon atoms pass. If data of the filter
property is not yet present on the filtered objects, it will be computed, it this action is not explicitly
prohibited by the filter definition. If the computation fails, the command using the filter will fail.

One of the most interesting features of filters, but also a source of complexity, is their ability to
operate on objects whose class does not correspond to the object class the filter property is attached
to.

Example:

ens bonds $ehandle carbon

The application of the carbon filter defined above to the set of bonds in an ensemble is completely
legal. Generally, when there is a mismatch between the filtered object type and the property object
type, an expansion step is inserted, replacing the original object by a list of objects of the class of
the filter property the original object is contained in or participating in. In this case, every bond is
internally represented by the (usually 2) atoms in the bond, and the property values of these atoms
will be compared against the filter value.

Since now more than two comparison take place, the question is what will happen if these
comparisons yield different results, for example in the case of a bond between a nitrogen atom and
a carbon atom. In the default case, whenever an object replacement occurs, the filter will let the
original object pass when any single replacement object passes the filter conditions. In the example
case, a carbon-hetero bond would pass. However, using special filter configuration options, it is
possible to write a filter which will only carbon-carbon bonds pass if such a feature is required.

Filter object expansion is supported for all classes of structure and reaction objects.

More examples:

reaction ens $xhandle product

Get the product ensemble from a reaction.

mol atoms $ehandle $label 6ring

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

Get the labels of those atoms in the indicated molecule which are members of one or more
six-membered rings.

Property descriptions may contain filters as part of their property description record. Filters on
properties are used to specify a subset of objects the property is defined for - for example, classical
atoms only (no superatoms, 3D points in space, etc.), or atoms with valid 3D coordinates.

Filter Sets and Filter Modifiers

Many commands on chemical objects, especially those performing data retrieval operations, support
an optional parameter called a filter set. In some cases, this parameter may be augmented by another
parameter following the filter set called the filter modifier.

A filter set defines a set of conditions the requested object must meet in order to have their data
returned. The filter modifier changes the kind of data which is returned and may impose additional
restrictions on the selected objects.

Filter Sets

A filter set is a list of filter names. Optionally, the first element of the list may be an integer number.
An empty list is equivalent to not providing any filter list at all. Since filter names may contain white
space, it is a good idea to quote the names.

By default, the filter list operates in an and mode. All conditions must be met to allow further
processing for the request on the object. If the first argument in a filter list is a number, this number
indicates the number of filters which let the object pass. Using 1 for this number is equivalent to an
or mode. Setting it to 0 effectively disables filtering.

Examples:
atom neighbors $ehandle $label carbon

atom neighbours $ehandle $label carbon

retrieves the labels of all carbon atoms which are bonded to the atom.

ens get $ehandle A FORMAL CHARGE {1 oxygen nitrogen}
retrieves the formal charges of all oxygen or nitrogen atoms in the ensemble.
Filters in filter sets may be individually inverted by prefixing their name with an exclamation mark.

Example:
ring get S$ehandle $r A LABEL {!carbon doublebond}

will find those labels of the atoms in the ring which are not carbon atoms but do participate in a
double bond.
Simple Filter Lists

In some contexts, not all of the functionality of filter sets is available. Instead, only a simple list of
filter names, optionally negated by a prefixed !, is understood. Selecting the number of filters that
must match is not possible. All listed filters must let the filtered object pass.

Simple filter lists do not occur in contexts which allow the use of filter modifiers.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 21

CACTVS Tcl Scripting Introduction

Simple filter lists will be gradually phase out and replaced by more powerful filter sets. This change
is compatible because filter sets provide an exact superset of the functionality of filter lists.

Filter Modifiers

A filter modifier is another list, which may be specified as an optional additional parameter after a
filter set in some contexts. This list may contain of an arbitrary combination of the keywords count,
bool (or boolean), include and exclude. The include and exclude keywords must be followed, as a
second list element, by a list of minor object labels.

The count modifier will change the behaviour of the command to return only an object count, not
the labels or data of the objects which pass the filter.

Example:

ens atoms $ehandle carbon count

will return the number of carbon atoms in the ensemble. The hool modifier is similar to count, but
will simply return 1 if any object passes the filter set and 0 if not.

The include and exclude lists define a list of objects which are eligible or not eligible for processing.
Ifthey are not set, all objects on the major object are processing candidates. An include list specifies
objects which will be subjected to the filter test. An exclude list will remove objects identified by
the labels therein, but will not block unreserved objects. If both an exclude and include list are
specified, only the objects listed in the include list and not the exclude list are processed.

Example;
set alist [atom neighbors $ehandle $11]

atom neighbors $ehandle $12 {carbon multibond} [list count include $alist]

will return the number of neighbors of the atom with the label in $12 which are carbon atoms with
a multiple bond and are also neighbors of the atom with the label stored in variable $11.

All objects support a filter subcommand to check whether it passes a simple filter list.

Example:

atom filter $ehandle $label [list carbon !aroatom]

will return 0 if the filter set stops the atom, 1 if it lets it passes - which means that it is a non-aromatic
carbon atom.

Obtaining object cross references

The Tcl scripting language environment provides an extensive group of commands to obtain the
object identifiers of object which are related to the original object. The relationship may be that of
a major object managing minor objects, or an intersection of minor object lists.

Examples:

ens atoms $ehandle
bond atoms $ehandle 1
mol rings S$ehandle 1

vertex connections $nhandle 1

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

The first command will retrieve the labels of all atoms from the managing major object. The second
command gets the labels of the atoms forming the bond. The third example retrieves the labels of

all rings which are in the first molecule in the ensemble!. The final example shows that these cross
referencing mechanisms are not limited to structure data - they are also available in networks, which
manage vertices and connections as minor objects.

Within the major object groups of ensemble-related data and network-related data, the full matrix
of cross-referencing possibilities is implemented. However, one cannot combine object identifiers
from those two realms, i.c. ens vertices $ehandle is not supported and does not make sense since
the result list would always be empty.

Self-references are supported, and are actually useful, because of the possibility to identify a minor
object not just by its label.

Examples:
bond bond $ehandle [list 1 2]
atom atom $ehandle #3

Above examples return the bond label of a bond identified by the labels of the bond atoms, and the
atom label of the third atom in the atom list of the ensemble.

Self-references for group objects are a special case, because groups are recursive. A group can
contain another group. For this reason, the command

group group S$ehandle 1

will, as the other similarly named commands do, return the group label, while with a plural groups
as in

group groups S$ehandle 1

reports the labels of all groups which are contained in group 1, or an empty list if the group only
consists of atoms. Because of the variability of the objects which form a group, the statement

group atoms $ehandle 1 count

does not return the correct size of the group, if the group contains other groups. In order to access
all objects in a group regardless of the object class, groups have a special objects subcommand,
which returns nested lists consisting of the object class name and the minor object label.

Two restrictions on cross referencing major objects exist. First, there are no commands to obtain the
label of the controlling major object from a minor object. A command such as atom ens ens0 1
would be really useless, since the controlling major object handle is already needed to address the
minor object. Second, hopping from a minor object to a major object which is not the controlling
major object is also currently not implemented. Attempts to obtain the reaction handle from an atom
participating in a reaction via a statement like atom reaction $ehandle 1 will currently fail.

It is however possible to obtain major object handles from related major objects via cross
referencing. The commands

reaction ens $xhandle
1. As a special complication, it is possible to have rings which are not just part of a single molecule, if the
bond types which are used for ring detection and separation of atoms into molecules are not identical. The
default bond sets are identical, but since the sets may be changed, data analysis and computation routines must
not assume that this complication cannot occur.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 23

CACTVS Tcl Scripting Introduction

ens reaction S$ehandle
queue ens $dhandle

dataset ens $thandle

and others of this type are all implemented. If a major object is not a part of a referred major object
class, such as in case of an ensemble which is not a component of a reaction, these commands will
return an empty list. Otherwise, the related major object handles (not the labels, as in cross
references to minor objects) will be returned.

From a syntactical perspective, plural forms of the names of retrieved object identifiers must be used
if the statement can possibly return more than one result element, and singular forms if only one
element can be returned, or alternatively a single element or an empty list. The plural of ens is
defined to be ens, the plural of ringsys is ringsys, and the plural of vertex is vertices.

An ensemble can only be a member of a single reaction and/or a single dataset. A reaction can only
be a member of a single dataset, but contain multiple ensembles (but the plural does not differ here).
Any minor object can only be controlled by a single major object. Rings can (under specific
circumstances) be a member of more than one molecule, so the correct form is “ring mols”. An

atom however can only be a part of a single molecule?, so the official form is “atom mo1”. Bonds
of more exotic types which are not used for separating atoms into molecules may span molecules,
S0 it is “bond mols”.

For historical reasons, not all of these syntactic singular/plural rules are strictly enforced. However,
code written today should adhere to the syntactic rules because backwards compatibility is not
guaranteed indefinitely. It is dangerous to write scripts in a way that they expect a single returned
identifier when the returned data could possibly be a list of identifiers with more than one element.
The distinction between singular and plural forms helps to shape awareness of this issue.

Atoms and bonds provide an additional neighbors subcommand which can be used to obtain
information on neighbour objects separated by one or more bonds (spheres) from the requestor
object.

The labels returned by minor object cross reference commands correspond to the x LABEL

properties’, where x is the property attachment class prefix of the object class. In principle, the code
examples

ens atoms S$ehandle

ens get $ehandle A LABEL

are performing the same operation. The direct cross referencing command is somewhat more
efficient.

Besides being shorter and more efficient, the direct cross referencing commands provide extended
capabilities for filtering the result set. The standard property retrieval commands only support the
use of a filter set, while the cross referencing commands support an additional filter modifier
parameter.

Example:

ens atoms S$ehandle carbon count

2. It is however possible that certain pseudo atoms are not part of any molecule.
3. The label property associated with a minor object class is actually configurable, but it is very strongly rec-
ommended not to tamper with it.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

returns directly the number of carbon atoms in the ensemble. The equivalent expression
llength [ens get S$ehandle A LABEL carbon]

is significantly slower, because of the property decoding overhead and the required construction of
an internal Tcl value list, which is immediately discarded after its length has been determined. Still,
this is much better than
set cnt O
foreach a [ens atoms $ehandle] {

if {[atom get $ehandle $a A SYMBOL]=="C”"} ({

incr cnt

}

In some cases, it is useful to know the position of an object in the object list of the controlling major
object. All minor objects provide an index subcommand, which returns this information. The first
position is index 0.

Example:

atom index S$ehandle 99

The index position is not necessarily the same as the label minus one. Labels may be changed by
many commands, directly or indirectly, and they do not need to form any uninterrupted sequence.
The only requirement is that within a minor object set under a controlling major object, no two minor
objects of the same class have the same label. On the other hand, a minor object label does not
change if the object is moved around in its object list.

Computing data for chemical objects

Obtaining data from chemical objects for analysis or export is one of the most important operations
of the toolkit.

Generally, the toolkit relies an a lazy computation approach. Date is usually generated only when a
specific data item is requested. At this moment, the toolkit will look at what data is already available
and the computation function which is associated with the requested property data. If the requested
data is already present, the toolkit library will simple return it. If it is not yet present, it will call the
computation function, which will itself request input data, which is either directly returned, or
generated in a recursive fashion. When the uppermost computation function returns, either the data
has been generated, or the whole process has failed and an error is generated. As a side effect,
additional data required by the computational functions will often be generated and attached to
chemistry objects involved in the computation.4

Aslong as no events take place which invalidate the data, it remains attached to the chemistry object.
The property consistency mechanism used to keep all information in a consistent state and the events

4. The standard process to compute property data is fully automatic and does not let the programmer influence
the computation path followed. Experimental features involving an exhaustive generation of paths from
source data to requested data and the use of rating functions to select preferred paths exist, but are not con-
tained in the standard toolkit distributions. For standard applications, the default computation path is nearly
always effective.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 25

CACTVS Tcl Scripting Introduction

which can lead to a discard of previously attached data is described in a separate section of this
manual.

In no case the programmer ever has to specify a sequence of explicit function calls to gather data or
to prepare input data for high-level functions. These issues are handled in a completely automatic
fashion by the underlying toolkit library.

The concept of a computation function is actually rather broad. These are the standard mechanisms
used for computation:

¢ Built-In functions. For the most common properties, the computation functions are built into
the core library. Examples are conversion function from element symbol o_symBoL to period
system number A_ELEMENT and reverse, computing the free electrons A FREE_ELECTRONS
from the number of shell electrons and the bonds an atom is participating in, or getting the
molecular weight M wETGHT by summing up the atomic weights and isotope labelling
information on all atoms in a molecule - potentially automatically initiating the grouping of
atoms into molecules at this moment if molecule information was not yet present for the
ensemble. Built-in functions are written in C.

* Dynamically loaded functions. Computation functions, together with the descriptions of
properties they are serving, may (and frequently are) be kept outside the core library. When
the computation function needs to be invoked, a shared object or DLL is located using its
name in the property description record and the object search path. If the object could be
found, and found in a place which passes security constraints, it is loaded and performs the
computation just as a built-in function. Dynamically loaded functions are usually written in
C, but may also be written in C++ if the main application was linked with a suitable set of
run-time libraries. The build environment of the CAcTvs toolkit contains mechanisms to
include modules which are usually shipped as separate modules and property description
files into a library. This method, in combination with the capability to compile an application
script into a n executable, is used to build stand-alone applications which, even though they
use properties, computation functions and other extensions outside the core library, do not
require a full toolkit installation for these modules and are completely self-contained.

e Script functions. The computation functions of property descriptions do not need to be
written in compiled code. It is possible, and often a very convenient rapid development
approach, to code computation functions in Tcl. These functions become an integral part of
the property description record and are stored directly in the file containing the description.
This, no additional look-up for locating the script code is required. Script functions are
executed in a so-called slave interpreter. Every script function set associated with a property
is executed in its own slave environment. In this environment, the computation scripts may
freely create variables etc. without fear of stepping onto data of the main interpreter running
the application script. Slave interpreters may be further restricted in their capabilities, for
example by disabling file I/O and Internet capabilities, in order to allow the execution of
code from not completely trusted sources in a sandbox environment.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

 Distributed computation. The computation of any property computation function, regardless
whether it is a built-in function, a dynamically loaded object, or a script function, may be
offloaded to another toolkit process. In order to use this feature, the second toolkit process
is started with flags instructing it to listen to an RPC port for computation requests. The
property definitions used by the primary process are changed in such a way that the offloaded
functions are linked to a specific host name and port where the computation server is
listening. If a request for a distributed computation arrives, the first interpreter will send a
packet of credentials and the required information (which is usually not the full amount of
data the requesting process has on the chemical object involved) to the computation server.
Depending on the set-up, the second computation server will either directly respond with the
result, or try to call the requestor process later after the computation is finished in an
asynchronous manner. A mechanism to report results at a time when the requesting process
is no longer active using a dedicated mailbox drop is also available. RPC-based property
computation is currently not supported on Windows.

* Legacy programs. Such programs are easily integrated into the CAcTvs computation scheme
by a script wrapper function. The wrapper function receives the handle of the requesting
object as input parameter, extracts the data needed by the legacy program, writes an input file
for that program, runs it, extracts the result data and attaches it to the chemical object.
Because property interpreters are isolated from the rest of the system and from other such
interpreters, they may keep state, for example maintaining an open pipe pair to the external
program. By this method, restarting the program for every computation request can often be
avoided and efficiency be maintained.

* Another method to integrate legacy applications is the use of an alternative representation
adapter. Alternative representation adapters are a special class of modules which copy
CacTvs structure data directly into a foreign data structure, calls functions, and extracts
information from the updated foreign data structure. To use this feature, the external program
must be available as a link library, which is linked to the alternative representation module
to build a shared object or a DLL. In case the external library performs multiple functions,
interfacing to its functions can be streamlined and automatized by the use of a common
adapter module.

* A special class of pseudo-computational properties are those which are configured to
automatically set the instance data values to the default values of the property when a
computation is requested, without actually invoking any function.

* Property computation requests via the SOAP protocol are currently under development.

Retrieving chemical object data

Accessing chemical object data is a very common task when writing CAcTvs scripts. The scripting
language interface provides a common set of access commands which are supported for all chemical
objects, both major and minor.

The following access (sub)commands are available:

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 27

CACTVS Tcl Scripting Introduction

get

dget

local

® nget

® new

Ifthe descriptor record of a requested numerical property contains enumeration information, and the

show

sqlget
sqldget
sqlnew

sqlshow

Get the property data in a Tcl-parseable format. If the data is already present,
return it directly. If it is not available, attempt to compute it. If computation fails,
return an error. If the property definition specifies enumerated value, and the
internal property value corresponds to a symbolic enumeration value, the value is
returned as string. Properties of data type date will be returned in ISO format
(YYYY-MM-DD HH:MM:SS) in readable format.

Get the property data in a Tcl-parseable format. If the data is already present,
return it directly. If it is not available, attempt to compute it. If computation failed,
initialize the property data to the default value and return these values.

Get the property data in a Tcl-parseable format, and always re-compute it, just as
in the new subcommand described below. However, if the computation function
supports this, and property data is already present, the re-computation is
performed only for the single data item identified by the object descriptor, so that
only one property value is updated. For example, a few selected property
computation functions support the update of data for single atoms, not just the full
atom set in an ensemble, which is the default. If the property computation function
does not support local updates, the standard re-computation on the full minor
object set is performed. The local command is only supported for minor objects,
because it is always equivalent to new for major objects, which are by definition
the only object in their property data object set.

Get the property data in numerical form in a Tcl-parseable format. If the data is
already present, return it directly. If it is not available, attempt to compute it. If
computation fails, return an error. Enumerations are ignored, and properties of
data type date return the value as seconds since 1970. This number is suitable for
use with the Tcl clock format command.

Get the property data in a Tcl-parseable format. Always re-compute it. It
computation fails, return an error. Note that the re-computation only discards the
requested property, but not any more low-level data present which will be used in
the computation. For example, for a new request for the ensemble molecular
weight E WEIGHT, only E_WEIGHT property data will be re-computed, but not the
underlying M WEIGHT property data which is used to get the ensemble weight. In
order to restart the computation using the atomic weights, M WEIGHT needs to be
explicitly discarded.

Get the property data in a Tcl-parseable format. Do not attempt to compute it. If
the data is not already valid, raise an error.

Same as get, but will return the data formatted with SQL syntax.
Same as dget, but will return the data formatted with SQL syntax.
Same as new, but will return the data formatted with SQL syntax.

Same as show, but will return the data formatted with SQL syntax.

numerical property value within the range of the enumerated set, symbolic names of the stored
numeric values are returned and not the internal numerical value.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

Example:

bond get [ens create CC] [list 1 2] B TYPE

will return the bond type name normal, not the integer value 2 which is internally used. In some
cases, numerical values are preferable. The nget data retrieval command variation will always return
the raw numerical data:

bond nget [ens create CC] [list 1 2] B TYPE

This command will simply return “2”. There is no corresponding sq/nget command variant, because
the SQL formatting will always use the numerical values.

Only a small fraction of property computation functions support local updates for single minor
objects. Whether the computation function associated with a property supports this functionality or
not can be checked with the following code snippet:

set does local [lcontain [prop get $prop flags] localupdate]

Examples for functions which do support this feature are the built-in functions associated with the
properties A LABEI, STEREO, A MAP STEREO, B LABEL STEREO, B MAP_STEREO and B FLAGS.

Data retrieval commands

The access commands for major objects will need the object handle and the property name as
identifier, while access command for minor object use the standard combination of major object
handle and minor object label.

Examples:
ens get $ehandle E NAME
atom show $Sehandle $label A SYMBOL

The retrieval of property data via an object which is not in the same class as the one the property
data is associated with is fully supported and in many cases an elegant solution for a variety of
problems. The rules for property access via non-matching object classes are the same as for
cross-referencing objects.

Examples:

ens get $ehandle A SYMBOL

bond get $ehandle $label A SYMBOL
mol get Sehandle $label R SIZE

These statements will retrieve the element symbols of all atoms in the ensemble, the symbols of the
atoms participating in the bond, and the sizes of all rings which are contained in the molecule.

Retrieving lists of property data items is generally more efficient than individual requests. So,
instead of writing a loop like
foreach a [ens atoms $ehandle] {

set sym [atom get Sehandle $a A SYMBOL]

}

this loop is preferable:
foreach sym [ens get $ehandle A SYMBOL] {

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 29

CACTVS Tcl Scripting Introduction

}
In cases where both the label and the symbol is needed, it is worthwhile to remember that the Tcl
foreach loop instruction supports the walking of multiple lists in parallel:

foreach a [ens atoms $ehandle] sym [ens get Sehandle A SYMBOL] {

}

Identical to the mechanisms used in object cross referencing, the returned objects may be filtered
by a filter set. However, unlike object cross referencing, the data retrieval statements do not support
the second optional filter modifier argument.

Examples:
set msizelist [ens get Sehandle M NATOMS heterocycle]
set rsizelist [mol get S$ehandle S$mlabel R SIZE heterocycle]

The first example will return the number of atoms in all molecules which contain one or more
heterocycles. The second statement yields a list of the size of all heterocyclic rings in the selected
molecule.

It is possible to retrieve more than one property by a single command. In this case, a nested list is
returned.

Example:
ens get [ens create C] [list A SYMBOL A NEIGHBORS]
{CHHHH} {41111}

Above statement will return a list which has two sublists: The first sublist contains the element
symbols, and the second list contains the number of neighbors of that atom.

It is even possible to mix the association classes of retrieved properties:
atom get [ens create C] [list A SYMBOL B ORDER]
cC {1111}

The returned nested list contains a single element symbol for the selected atom in the first sublist,
and the bond orders of all bonds the atom is participating in is returned in the second sublist.

Setting of property computation parameters

As a final parameter after the optional filter list, it is possible to specify a list of name/value pairs
for the computation of the requested property. If the data is already present, the specified
computation parameters are checked against the saved computation parameters which were used for
computing the existing parameters. If any discrepancy is fund, the property data is re-computed with
the new parameters. Only specified parameters are checked - parameters which are not mentioned
in the requested parameter list and which are present in the saved parameter set will not trigger a
re-computation. Implicitly, the parameters which are used in the computation request are also set as
default for future computations inside the property definition data structure.

Example:
ens get $ehandle E GIF {} [list height 200 width 200]

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

This line will always return an image with height 200 and width 200. If an image of a different size
is attached as E_GIF property data to the ensemble, it will be discarded. This command will not
change the current global parameter setting of property £_c1F. Parameters not listed in the parameter
list will be taken from the global settings of £_G1F, but any parameter which is set locally in this
statement will be active only for the execution of the command.

Note the use of an empty filter set as fifth word in this example. This empty parameter is required
to skip the filter set parameter argument position. An empty filter set is equivalent to omitting the
filter set altogether.

The parameters which are recognized depend on the property. Names of parameters which are not
used by the computation routine for the requested property are ignored. The names of parameters
recognized by a property, as well as its current settings, can be obtained by calling

prop get E GIF parameters
prop get E GIF defaultparams

Both commands return a name/value list of parameter names and values, which can be stored in a
Tcl array via an array set command. The first version returns the current parameter setting, while
the second returns the default setting. Individual values can be obtained via commands like

prop getparam E GIF width
prop getparam E GIF height

Property computation parameters can also be set directly on the property definition structure, via
commands like

prop setparam E GIF height 200 width 200

The setparam subcommand of the prop command allows the manipulation of individual parameter
values, just like the getparam subcommand is used for extracting specific parameter values. Using
the get or set commands on the parameter attribute, which is only one of a large number of attributes
which form a property definition, will retrieve or set the complete parameter list in one step.

The prop set and prop setparam commands change the parameter values of a property globally
within the current program. The changes remain active until the program is terminated, or until they
are overwritten by additional commands, or a reloading of the property definition. They will not
change the parameter settings persistently - when a new interpreter is started, it will use the original
parameter settings. The only way of changing property parameters permanently is by editing the
corresponding property definition files.

Resetting parameters to the default value is easily done via statements like

prop set E GIF parameters [prop get E GIF defaultparams]

Property metadata

The toolkit remembers the parameters property data was computed with, and numerous other
information about the history and origin of data. Some parts of this meta information may also be
edited or augmented by script commands.

All commands to work with metadata are used with major objects only. This makes sense since
properties are always computed or otherwise set up for all minor objects of a major object in a
concerted action.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 31

CACTVS Tcl Scripting Introduction

The generic command to access property metadata is the metadata subcommand for major objects:
ens metadata Sehandle E GIF

ens metadata Sehandle E GIF comments

ens metadata $ehandle E GIF comments “this is a beautiful picture”

Note that this will work with all major object types, such as tables, reactions, or networks, if you use
the corresponding object command and object handle. The first example will return a list of

keyword/value pairs of all metadata. It can be stored in a Tcl array variable by means of a array set
command:

array set gifparams [ens metadata $ehandle E_GIF]

The second example will selectively return the value of the comments field in the metadata record.
The third line shows how to set a metadata field.

The standard fields for property metadata are:

° parameters The parameter set used for computation, as a list of keyword/value
pairs.

* info Information about events which happened during computation as a
string.

° comments Free-text comments as a string.

* flags A standard set of flags indicating status. Usually, this field is none,

but it can be a list of the values unreliable (applicability of
computational method questionable, but not a hard error), remote
(computation underway on remote server), async (remote
computation in asynchronous mode), interpolated (data is not in
original grid, but was interpolated from other data points not on the
grid), reagent (applies to reagent side of a reaction), product (applies
to product side of a reaction) and unoptimized (basic data was

successfully computed, but successive optimization/smoothing steps
failed).

° unit This is not the property base unit (which can be obtained via a prop
get $p unit statement), but rather the unit for grid points of
multi-dimensional properties. This field is not available for non-grid
data. As an example, the base unit of a property might be fractions of
electron charges, while the grid unit might be Angstroms.

* dimensions The number of dimensions for grid data. Not available for non-grid
data.

e xrange, yrange... The low and high limits of the coordinates for grid data on each axis,
in the units defined above. Not available for non-grid data. This
parameter is a pair of floating-point numbers, or empty strings if the
low/high bounding data is unknown. The coordinate axis names are
X,¥,Z,W,1,v,a,b,c,d,e,f,g h in this order. Only the coordinates up to the
declared number of dimensions are output.

The dimension count and coordinate ranges cannot be changed.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

Additional parameter keywords in the parameters metadata field may be conveniently set on
existing property data with the setparam command:

ens setparam $ehandle E GIF mimetype “image/gif”

This command will also overwrite existing keywords in the parameter set. This is a convenience
function - it could be replaced by first getting the full parameter list, manipulating it, and writing it
back as a whole.

There is also a corresponding getparam command:
ens getparam Sehandle E _GIF width
ens getparam Sehandle E GIF format

The first line of code will selectively return the value of the width parameter which was used during

the computation of the E_GTr property and which reflects the image width>. The second example

line of code will report the image format, which can actually be gif, png or various Windows bitmap
types. Note that every property has its own parameter set, which can be obtained via a prop get $p
parameters statement. These examples are not directly transferable to other properties.

The native CAcTvs file formats store and thus preserve property metadata. Unfortunately, none of the
standard structure exchange formats provide similar functionality, so this information is lost when
importing or exporting structures and other data objects in non-native formats.

The metadata command may be abbreviated to meta. The deprecated alias propenv is also still
supported.

Indexed access to property data

As it has been explained in the chapter on property naming, many properties allow indexed access
to subfields of the property. The precise meaning of indexed access depends on the data type of the
property in question. Some examples:

ens get $ehandle E FILE (name)

The first example line demonstrates the subfield access to a compound property. E_FILE is a
property which is automatically added by the structure file input routine. If contains the name of the

file the structure was read from, the record number before and after reading the data6, the line
number of the beginning of the read file section, and the file format name. The file name is stored
in the field named name of the E_FILE compound data structure, and may be accessed directly by
specifying its name. If the full property data without indexing is returned, a list of all the data fields
is returned. The name of the field is set in the property definition record for £ r1LE. Alternatively,
its numerical index, which is 0, could have been used. Using the symbolic name is generally
preferable, since it makes the code more readable and the name will not change if fields are added
or removed from a later version of the property definition.

ens set $ehandle E NAME “a b c”
ens show $ehandle E NAME (1)

5. This is actually only true if there is no image cropping. The width field is the original width of the image
used for drawing the structure. The final image height and width are provided in the croppedwidth and
croppedheight fields. If cropping is disabled, these are the same as the original width and height values.

6. Under certain circumstances, it is possible that an input operation consumes more than one file record. This
is the reason why two record numbers are stored in these property data instances. For standard applications,
both record numbers have the same value.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 33

CACTVS Tcl Scripting Introduction

The second indexing example shows the use of a numeric index on a string property. This example
will return the second word (the index positions begin with 0), which is “b”.

Finally, the statement
ens get $ehandle A XY (x)

will only return the X-coordinates of the 2D display coordinates of the compound.

Property computation requests without data retrieval

In some cases, a script is not interested in accessing the data items, but just wants to make sure that
certain property data is present. This can be achieved by the need subcommand:

ens need $ehandle A LABEL STEREO

This command will not return the actual data values, but start a computation if the data is not yet
present. If the computation fails, an error is raised. It is possible to use a property name list instead
of a single property name.

Optionally, a processing flag list and a computation parameter list may be specified as well:
ens need $Sehandle E GIF recalc {width 200 height 200 bgcolor white}

The mode flags argument may be empty, or any combination of the flags recalc (force
recalculation), reload (force reloading of computation module if it is an external module), default
(no computation, just set to default, but preserve if already present), reset (make sure that property
is attached, and reset to the default value), ifcomputable (compute if possible, otherwise set to
default), defaultonerror (if computation raises error, reset to default but ignore error), plus a couple
of undocumented specialist options mainly intended for debugging.

Checking data presence and applicability

The valid subcommand is available for major objects to check whether a property is valid for that
object.

Example:

ens valid Sehandle A ISOTOPE

ens valid $ehandle E NAME

expr {![catch {ens show $ehandle E NAME}]}

the first two code lines will return 1 if the properties A 1s0TOPE or E_NAME are part of the data
attached to the ensemble, 0 otherwise. Note that this query always operates on the controlling major
object. This is due to the fact that either all minor objects under a major object have a valid property
value, or none has, so that an individual check on a minor object does not make sense. The third code
line performs the same operation as the second one in a convoluted way - the show subcommand will
raise an error if it is used on non-existing data.

However, having a valid property as part of the major object data does not necessarily mean that the
property is defined for an individual object. It may well be that, for example because an atom is of
an exotic pseudo-atom type, some property data for such pseudo atoms has no meaning. Usually, the
property value for these objects will be the default value of the property, or be set to a magic number,
but this is not reliable. The simplest way to check whether a property is actually meaningful for an
object is to use the defined subcommand.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

Example:
atom defined $ehandle Slabel A XYZ

will return 1 or 0, depending on whether the concept of 3D coordinates is defined for that class of
atom, or not. Limitations to the applicability constraints of properties are implemented as a filter set
which is part of the property definition. An empty filter set does not impose any applicability
constraints.

Currently, the property management mechanism do not support explicit NULL values on chemistry
objects. Table element data is an exception - tables already support the notion of unset data on rows,
columns and cells, but not in table-global property data. This feature will be added in generic form
in the near future.

Setting property data

The scripting language interface provides three subcommands for setting data on chemical objects.
These subcommands are available for all major and minor chemical objects.

° set Create new property data information. If the data is already present, it is
overwritten.

e append Append property data information. If the data is not yet present, it will be
computed and the new value appended to the computed data.

o fill Essentially the same as the set subcommand, but the value list may be shorter. The
missing elements are initialized to the default value of the property.

The precise meaning of “appending” data depends on the data type of the property values which are
manipulated. The following rules apply:

* For vector data types, the new data is appended by adding elements to the vector.
* For string data, the new data is appended by concatenating it to the current value.

* For numerical data, both integer and floating point types including hashcodes, which are
64-bit unsigned integers, the new value is numerically added to the old value.

* For bit sets, the bits in the new data are bit-ored to the existing value.

* For tree-type data (data and query trees), the new value is linked as a new child of the
topmost tree node. If the old tree did not have any nodes, the new data becomes the tree.

* For other data types, append is treated as set and will just replace the old value.

The rules are applied in this order, meaning that for example float vector data will be extended by
adding new vector elements, not by adding the two vectors. Other behaviours can easily be enforced
by requesting the data item with a gef command, manipulating it by any method, and then
overwriting it with a normal set command.

Examples:
ens set $ehandle E NAME “New “
ens append $ehandle E NAME “lead”

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 35

CACTVS Tcl Scripting Introduction

After these two commands, the ensemble name will be “New lead”.

It is possible to set or append to indexed fields of property data selectively without changing the rest
of the data.

Example:
ens set $ehandle E NMRSPECTRUM (instrument) “Bruker PaceMkrStopper 2003 Ultra”

More than a single property can be set in one command. After the object has been identified, an
arbitrary number of property and data pairs may be used as arguments.

Example:
atom set Sehandle $label A COLOR red A FLAGS boxed

The associated property class of the modified property does not have to correspond to the class of
the manipulated object. If there is a discrepancy, the same object replacement algorithm as in object
cross referencing and object data retrieval is invoked. If the set or append methods are used, the
number of values passed in must correspond to the number of objects after substitution. In case of
the fill method, superfluous data items are ignored, and missing data items substituted by the
property default value.

Example:
bond set $ehandle $label A COLOR [list red red]

This command sets the colour of the two atoms which form the bond (assuming it is a standard bond
with two atoms) to red. Using more than two colour data items, or less, will result in an error.

Property data consistency manager issues

The toolkit has an automatic mechanism to keep the overall property data set in a consistent state.
Property definitions contain information about underlying, more basic properties the values depend
on. When property data is changed, all other properties which rely on the changed value will be
purged. The process is recursive, and all properties whose data was invalidated in the first generation
will be submitted to another round of dependency checking. Changes on core data such as the
element number will result in the loss of most ensemble information.

In some cases, this mechanism can overshoot. A common example is setting of A SEARCHINFO
atomic query data. Example:

atom set $ehandle $label A SEARCHINFO (ringcount) [expr ~1]

This line sets the match condition that the atom must be a member of one or more rings. However,
the molecular ensemble will afterwards most likely become almost unusable. The reason is that
A_SYMBOL, the atomic symbol, depends on 2_sEARCHINFO, because special symbols such as ? for an
any atom, or L for an element list are produced when a_symBoL is computed from basic information,
which includes the properties o TYPE, A ELEMENT, and A SEARCHINFO. Now, when A_syMBOL is
invalidated, o ELEMENT is also in the next round of dependency checking, because A ELEMENT is
computed from o _symBoL when it is not present. Thus, we end up with neither A ELEMENT nor
a_symBoL and have lost all element information and there is no way to re-compute the information.
The next time element information is needed, an error message about possible infinite recursion will
be generated, because the toolkit is caught in a loop trying to get A ELEMENT from A syMBOL, and
A SYMBOL again from A ELEMENT.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

The way to prevent this from happening is to lock the element information:
ens lock [ens need S$ehandle A ELEMENT] A ELEMENT

atom set $ehandle $label A SEARCHINFO (ringcount) [expr ~1]
ens unlock $ehandle A ELEMENT

The first line makes sure that o ELEMENT is present, and then locks it, making it insensitive to the
normal dependency checks. After setting the query data, the element information is unlocked again
and put back under the control of the data manager.

Fortunately, in most cases the property data consistency manager does not interfere in unexpected
ways and setting property data is straightforward.

Object Attributes

Not all data attached to chemical objects is stored as property data. Internal state information of the
objects are accessible as attributes, not as property data.

An attribute can be distinguished from a property by the name. Object attributes are always simple,
lower case, single words. These cannot be confused with property names in CAcTvs nomenclature,
since these are always written in uppercase. Attributes cannot be indexed. In case of a collision with
an alternative property name (such as a data field name from an SD file, etc.), the object attribute

has precedence in the identification process. The attribute set for each object class, which is directly
linked to the object data structure, is fixed and cannot be changed without recompilation. There are
no definition records or other meta-level description mechanisms for attributes.

The number of attributes associated with a chemical object is highly dependent on its object class.
Structure file objects have dozens of attributes, but usually no or very few properties. Ensemble
objects typically store a rich set of property data, but have only very few attributes. Most minor
objects possess no attributes at all, since their state is generally managed by their major object and
they cannot exist without it.

The object attribute access commands are the same as for object properties. All retrieval commands
for attributes return the attribute value in Tcl format, without any mechanisms to change the
formatting. Most attributes only support a simple set operation. The only exception are bit sets,
which also provide an append method to allow the addition of specific attribute bits. Attributes may
only be queried and manipulated directly on the current object. Implicit or explicit cross-referencing
to other objects is not supported. Many attributes are read-only, but not necessarily constant. In some
cases, changing the value of an object attribute will result in major internal reorganization, which
can have far-reaching side effects.

A few selected object attributes are saved and restored if native CAcTvs storage formats are used, but
not all. For example, the ensemble modification count attribute is not saved. It is reset to zero when
an ensemble is created, and is already incremented during the initial input process, regardless of the
file format read. Traditional chemical information exchange formats will not preserve any object
attributes.

Examples:

set fmt [molfile get $fhandle format]

molfile set $fhandle format sdf eoltype unix
molfile append $fhandle readflags noimplicith

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 37

CACTVS Tcl Scripting Introduction

ens get $ehandle modcount

Atoms and Bonds

The Cactvs library has a very broad view of what atoms and bonds are or could be. Scripts should
be written to be prepared to cope with unexpected atom and bond types.

The atom and bond types are declared by values of the properties A _TypE and B_TypE. These are
essential properties and should never be deleted. Both properties are encoded as bit positions on a
32-bit integer. All acceptable values of the type properties are powers of two. A type declaration has
only a single bit set, but in other contexts multiple bits may be set to form a mask of acceptable or
unacceptable types. In principle, it is possible to declare new atom and bond types at runtime.

The type property only defines the general class of the atom or bond. For example, an atom with
a_TYPE normal will be fully defined only by additional data in properties A ELEMENT and/or
A_SYMBOL, possibly A ISOTOPE, A FORMAL CHARGE and/or A FREE ELECTRONS plus bonding
information, and so forth.

Atom types
These types of atoms are supported in the standard toolkit distribution:

* normal (1) A standard atom with an element number. This is what is usually
considered an atom. It is the only type of atom where electron counting
is performed for bonds.

* search (2) A search specification, such as an any atom, or a list of possible
elements. The query data is stored in property A SEARCHINFO.

° epair (4) An electron pair. This type of pseudo atom is usually generated as result
of reading certain modelling software files. The CacTvs toolkit does not
natively encode electron pairs as pseudo atoms.

* 3dpoint (8) A point in 3D space without a nucleus. Examples are grid points with
property data such as NMR shielding, or a point in space used as
reference in 3D substructure searching.

* super (16) A superatom, which is a placeholder for a larger group of atoms. Known
superatoms may be expanded.

* delocanchor (32) A 2D or 3D point related to a delocalized & system. An example where
this is used are charge symbols placed in the vicinity and connected to
a m system with a delocalized charge for depiction purposes.

* polymer (64) A generic polymer, for example a bead in solid phase synthesis. The
standard depiction methods in the toolkit allow the display of these
pseudo-atoms as a bead.

* annotation (128) A generic placeholder for non-structural annotations to a 2D or 3D
depiction, such as comments, arrows, etc.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

open (256)

enzyme (512)

CACTVS Tel Scripting Introduction

A generic placeholder for an open valence. These are generated by
reading certain data sources - CAcTvs does not encode open valences by
itself as pseudo atoms, but as atom attributes.

A generic placeholder for an enzyme or peptide. This type has been used
for the modelling of metabolic pathways.

From this list, only the types normal, search, 3dpoint, super and polymer are routinely encountered.
Some of the more exotic types were introduced only for specific projects and should not be
considered fully supported in all contexts.

Bond types

This is the list of standard bond types:

link (1)

normal (2)

hydrogen (4)

dative (8)

3center (16)

angle (32)

torsion (64)

rgroup (128)

nobond (256)

A neutral indication for a relationship between the involved atoms.

A standard valence bond. This is the most common type of bond. The
electrons needed for the bond are automatically subtracted from the

A FREE_ELECTRONS count of the involved atoms (if these atoms are
normal atoms) when the bond is formed. Likewise, the standard
commands for bond manipulation will update the atom electron counts
when changing the bond order B_0ORDER, or cutting the bond.

A hydrogen bond (not a bond to a hydrogen atom - these are encoded as
normal VB bonds).

A dative bond. This bond type is treated slightly differently from the
more common complex bond type. For example, it is not contained in the
set of bonds which are used to define molecules.

A three-centre bond, as they are for example found in boranes. Note that
this bond contains three atoms!

A pseudo-bond used to encode bond angle information. This bond
contains three atoms. The middle atom is the atom for which the angle
to the other two atoms is computed. It it not required that normal bonds
between the first and middle, or the middle and third atom exist, so this
construct can be used to measure the angle of any atom triangle.

This pseudo bond is very similar to the angle pseudo bond. It is used to
store torsion angle (the angle between the plane formed by the first three
atoms and the plane formed by the last three atoms) information. This
bond contains four atoms. It is not required that there are any normal
bonds between the atoms which form this pseudo bond.

This bond links one or more alternative R-groups to a core fragment. It
is for example used in substructure searching where different substituent
groups are possible. The first atom in the bond is part of the core
fragment, all other atoms are the link atoms of alternative fragments.

This bond type is used in substructure searches. It declares a bond which
must not be present in a matched structure.

Xemistry GmbH © 2002-2024

Cactvs Tcl Scripting Introduction 39

CACTVS Tcl Scripting Introduction

* deloc (512) This uncommon pseudo bond type is used for the encoding of
delocalized systems. It is generated by reading data from certain data
sources like the Specinfo database which use this bond type for the
encoding of delocalized charge or tautomer systems. This bond type,
which was introduced for a specific project, is not fully supported in all
contexts and should be avoided.

* complex (1024) A generic complex bond. It is the preferred method to encode metal
complexes. In most respects, it behaves like a normal VB bond, but
electrons for bonding are not counted or consumed. The standard CAcTvs
display modules will depict these bonds as dotted lines, without a need
for setting this attribute bit in B_rFracGs explicitly.

The most common bond types are normal and complex. The file I/O routines of the toolkit contain
routines to convert almost any compound into a reasonable representation with a mixture of normal
and complex bonds.

Bond class sets

The sets of bonds which are used to sort atoms into molecules, and to find rings in ensembles, are
configurable as a bit mask, for example via the global control array elements ::cactvs (molbond)
and ::cactvs (ringbond) . The standard set of molecule-defining bonds consists of normal, 3center
and complex. This is also the standard set of ring bonds. Note that these bond sets are indeed
independent - under the right circumstances, it is possible to have rings which span multiple
molecules.

Another important bond set is the set of persistent bonds, which may be modified via the control
variable : :cactvs (persistbond). This set contains by default the bond types normal, nobond,
3center, rgroup and complex. Only bonds of these types survive any modification of the bond list.
Pseudo bonds such as torsions and angles will automatically disappear whenever the bond list is
edited.

Aromatic bonds

There is no aromatic bond type in the CAcTvs toolkit. Internally, aromatic systems are managed as
a Kekulé structure with single and double bonds. However, CAcTvs is of course aware of bond
aromaticity. This information is encoded as additional properties B 1SAROMATIC (a boolean flag)
and B ARORING COUNT (integer, number of aromatic rings the bond is a member of). The toolkit
contains a aromatic system resolver, which will automatically generate a Kekulé form from data
sources which encode aromatic bonds explicitly as such. The original aromaticity information is
preserved as B_ISAROMATIC property data. In the other hand, aromaticity will be detected if the
properties are not yet present, so simply using B_ 1sAROMATIC data in any context will implicitly
trigger a ring system and aromaticity analysis if this has not yet been done.

One common problem encountered upon reading data from MDL Molfiles is a misinterpretation in
the proper encoding of aromatic bond information in these files. The MDL bond type 4 is, according
to the official MDL documentation, a query bond type, and properly read as such by the toolkit. A
normal single bond will be generated, and an addition an attribute flag in B_SEARCHINFO is set to

make sure that this bond will only match an aromatic bond in a substructure match. However, no

Kekulé structure is generated, and such structures appear to have all single bonds. Structure data in
Molfiles with aromatic bonds should be written in Kekulé form by conforming programs generating

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

the output. In case aromatic bonds were nevertheless mistakenly output as type 4, the resolver must
be invoked explicitly:

set fh [molfile open sloppy.sdf r aroresolver 1]

set eh [molfile read S$fh]

The aromaticity detector of Cactvs generally works well, but does not in all cases have an identical
opinion as other structure processing toolkits on the question whether a given system is aromatic or
not. As an example, the Daylight toolkit has a broader idea on what aromatic systems are than
cactvs. For CAactvs, rings with exocyclic keto groups cannot be aromatic because the © system is
not cyclic, but for Daylight apparently every ring where all member atoms participate in systems
is automatically considered aromatic. For substructure matching, a special mode has been
implemented to allow to compensate for this difference in the perception of aromaticity, but in other
contexts developers need to be aware of potential differences.

Query bonds

While there is an explicit atom type search, no explicit query bond type exists, with the exception
of the special case of the nobond bond. A bond always has a primary type, which usually is a
standard single VB bond, or a /ink bond in case problems with electron counting need to be avoided.
Bond query information in then stored in property B_searcHINFo. Fields in that property will, for
example, allow overriding of the actual bond order in the substructure by a list of acceptable bond
orders and bond types in the matched structure. If no such attribute is set, the actual bond order must
match the bond order in the structure, with special consideration given to aromatic systems where
bond orders are not compared directly.

Bond set-up

Under most circumstances, bonds will be present when an ensemble is generated, and they remain
present as minor object set throughout the lifetime of the ensemble.

However, this is not an absolute requirement. The minor object group of bonds may be absent from
an ensemble, just like rings or molecule, and the toolkit has a built-in mechanism to set up bonds as
a minor object group whenever they are needed.

If bonds are required but not present, an attempt will be made to generate them by an analysis of
atomic 3D coordinates. The degree of success for this automatic 3D structure analysis varies. I is
beneficial to have structures with a full set of hydrogen atoms.

Whenever files which do not contain bonding information are read (such as .xyz files, or some PDB
files), the bond generation algorithm is automatically invoked.

Because of the possibility to use pseudo bonds such as torsional angles or bond angles, the bond set
of a structure may change even without any structural modifications. Applications should always
filter the bond sets they are working on by the bond and atoms types (properties B_TypPE and

A TYPE).

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 41

CACTVS Tcl Scripting Introduction

Ensemble Minor Objects

Besides atoms and bonds, which form the backbone of an ensemble, ensembles may control an open
set of additional minor objects. In principle this set is designed to be extensible, but currently no
scripting language interface to minor object class extensions exists.

When an ensemble is input, directly as an ensemble or indirectly as a part of a larger structure such
as a reaction, dataset, or as attached property data, in almost all cases the standard minor object sets
of atoms and bonds is set up.

Automatic initialization

Other object classes are usually not initialized. However, these object sets are set up whenever
property data for that object class is requested, either directly or indirectly by some recursive
computation function. For example, atoms are often not sorted into molecules. The first time a
molecular property is accessed, for example by requesting M_WEIGHT, or executing an ens mols
command which implicitly uses M_1aBEL, the toolkit will perform assign the atoms to molecules,
and set up molecule minor objects, one for each molecule found. These molecule objects then act
as anchors for the attachment of molecule properties, such as M LABEL or M_WEIGHT.

The same system is used for rings, ring systems, « systems, c systems, etc. Not all minor object types
have set-up functions which actually generate objects. For example, the set-up functions for groups
will initialize the group control structure, but not actually generate any default set of groups because
there is no standard procedure to generate an initial set of groups.

Loss of minor object sets

In contrast to atoms and bonds, which are very stable with regard to structural modifications and are
rarely completely discarded, this is generally not true for other minor object sets. For example,
molecule, ring and ringsystem information is completely discarded whenever a bond is made or
broken, without any deep analysis whether this operation results in an actual change of molecule or
ring information. Rings, ringsystems and molecules are regenerated in a lazy fashion whenever their
presence is required the next time. Some specialized operations which are technically speaking atom
and bond changes will however preserve additional information - for example, hydrogen addition
via hadd commands will not destroy ring information because these commands will never change
the ring set.

Not all minor object types are completely destroyed as a result of atom and bond changes. For

example, groups are more robust - when an atom is deleted which is a member of a group, that group
(and potentially other groups which contain the group as elements) is deleted, but not the complete
set of groups. The behaviour of a minor object class depends on the class-specific handler function.

Locking of minor object sets

It is possible to lock minor object groups, and thus make them insensitive to structural changes. In
case a minor object whose list is locked stores object references, and a referenced object is deleted,
the minor object containing the object is deleted instead of the full minor object list. This is a

recursive procedure. Under certain conditions, this will work as expected. For example, it is simple
and convenient to lock the ring information if the programmer knows for certain that all structure
manipulations which are performed during the lock will not change the ring set for the structure. If

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

however an atom is deleted which is a ring member, the rings containing the deleted atom are
themselves deleted, resulting in an incomplete set of rings. Since the set of rings is still considered
to be set up, rediscovery of the ring set will not automatically happen and must be initiated manually
- and this requires that the developer is aware of what happened. For this reason, locking of minor
object sets should not be considered a routine procedure.

Properties set as result of automatic minor object set-up

The discovery process of minor object sets will set a number of properties on these objects, and
potentially on other types minor objects of the controlling major objects. In all cases, the label
property for the identification of the minor object is initialized.

All label properties, when initially set, number the objects controlled by the major object in a
sequence starting with one. After that, the object label is never automatically changed as long as the
object is in existence. Very few exceptions exist, such as the merging of ensembles and similar
operations, where minor object labels may be shifted with a constant offset in order to avoid
collisions. Because the object label is the primary access key to the object within the scripting
language environment, extra care should be taken to avoid collisions when setting them directly.

Object label properties are configured to create automatic back-ups when they are changed. The

previous label set is preserved under the original name with a % character suffix, for example
A LABELS.

This is the list of properties set when a minor object list is set up:

* Bonds B_1ABEL (bond label), 8 TvypE (bond type), B orDER (bond order)

* Molecules M LABEL (molecule label), E NnMoLECULES (molecule count),
A MOL_NUMBER (atom molecule index plus 1, 0 for atoms outside
molecule”)

* Rings R_LABEL (ring label), R_TYPE (ring class)

* Ringsystems Y LABEL (ring system label), R_sysTeM (ring system label)

* 1 Systems P_LABEL (7 system label), p_cLass (n system class)

* o Systems S_LABEL (o system label)

* Groups G_LABEL (group label)

* Vertices v_LABEL (vertex label)

* Connections C_LABEL (connection label)

Molecules and Rings

Molecules, rings and ring systems are standard minor object classes which are automatically
maintained by the toolkit. Set-up of these object classes is fully automatic. There are no

mechanisms® for manually generating object instances for these classes.

7. Warning: A MOL_NUMBER is not guaranteed to correspond to the molecule label M LABEL. Use property
A MOL_LABEL for this purpose.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 43

CACTVS Tcl Scripting Introduction

Controlling the detection of molecules, rings and bonds

The automatic set-up of molecules and rings can be controlled in a number of fashions. Important
mechanisms are:

* molecule bond types A bit mask of bond types which are used to find atoms which
are linked to a common molecule, which can be configured at
the scripting language level in the cactvs (molbond) control
array element.

* ring bond types A similar bit mask of bond types which define rings in the
ensemble. It can be configured at the scripting language level
via the cactvs (ringbond) control array element.

* ring set The toolkit can be configured to find different kinds of ring
sets. The ring set used for automatic ring detection can be
changed by means of the cactvs (ringset) control array
element. The most useful values for this field are 0 (SSSR), 1
(extended SSSR) and 3 (full set). The default is the extended
SSSR set. The definition of the extended SSSR is that it
contains the SSSR rings, plus all rings with a sequence of three
consecutive ring atoms which are not contained in any SSSR
ring. For example, under this definition cubane will have 6
four-membered rings (5 in the SSSR), anthracene 3
six-membered rings and two 10-membered rings, but no
14-membered outer ring (in the SSSR, anthracene has only
three six-membered rings), and norbornane two
five-membered rings and one six-membered ring (two
five-membered rings in the SSSR).

The determination of ring systems do not directly rely on bonding information. Rather, any rings
from the current ring set which contain at least two common atoms are considered to the part of the
same ring system. Spiro ring pairs are not in the same ring system, if no other link than connecting
one spiro atom exists.

Ring sets

The choice of the ring set will influence a number of other property values, for example all ring
membership counts. In case of metal complexes, the choice of the ring bond types will also have a
pronounced effect on the rings detected in the structures. The class of a ring can be queried via the
R_TYPE property, which is automatically set during the ring detection process.

Example:

foreach r [ens rings S$ehandle !envelope] { }

This code fragment will do something with the rings, but filter out all envelope rings. An envelope
ring is a ring which can be constructed by the union of smaller rings. In naphthalene, all rings except

the six-membered rings are envelope rings. In norbornane, the six-membered base ring is not an
envelope, because it does not contain the bridge atom present the five-membered rings and is thus

8. There still is a method to create a ring system manually, but this is deprecated functionality.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

not a union. The envelope filter is a built-in filter which checks the value of property R TYPE to be
envelope (and not esssr, or sssr).

The ESSSR ring set has the advantage that it is much more stable with respect to atom numbering

than the SSSR®. This is for example important in substructure searching with ring membership
counts or checks on ring types. For example, a check whether an atom is a member of a heterocycle
can easily fail for cage compounds if the heterocycle was by chance assigned to be one of the
implicit rings, such as the sixth four-membered ring in cubane which is not in the SSSR.

A number of functionalities which rely on ring information were programmed to use only rings of
the ESSSR and ignore extra rings which might be present because of a larger ring set was computed.
Whether a function or property restricts itself to the use of ESSSR rings, or uses all rings it finds, is
documented for the specific functions.

Effects of setting different bond and ring bond type masks

Because the bond types used for the detection of rings and molecules are independent, it is possible
to have rings which span more than one molecule, or molecules which contain partial rings. When
an ensemble is split into molecules to form individual ensembles, partial minor object structures are
lost.

Certain atom types (undefined, 3dpoint values in property o TYPE) are not considered to be part of
any molecule, regardless of the bonding situation. These pseudo atoms will have 0 as o MoO1, NUMBER
or A_MOL_LABEL property values.

Molecule manipulations

Molecules support an extended set of commands compared to other minor objects. Most of these
reflect the fact that molecules are central to organizing chemistry data and exist as isolatable
physical entities.

When molecules are addressed, it generally means that the group of atoms which form the molecule
are processed. Information which is encapsulated within the molecule (such atom, bond and ring
data) is preserved where possible. Any objects which cross the molecule boundaries (such as rings
or bonds which are not covered by the bond types used to define a molecule) will be lost.

Examples:
mol dup $ehandle 1
mol delete $ehandle 2

The first example will duplicate the molecule with label 1. The molecule forms a new ensemble.
Data of the duplicated molecule is preserved where possible, so atom, bond and ring labels will be
the same as in the original molecule. Objects which are not restricted to the original molecule, such
as molecule-crossing bonds and rings, or groups which contain atoms from different molecules, are
not duplicated. Other minor objects of the ensemble, such as other molecules, atoms and bonds
outside the deleted molecule, groups which did not contain any atoms of the deleted molecule, etc.
are preserved.

9. But is it not guaranteed to be completely independent of atom numbering! For practical purposes, this is
however usually no an issue, in stark contrast to working with traditional SSSR ring sets.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 45

CACTVS Tcl Scripting Introduction

The second line of sample code deletes a molecule with label 2 from an ensemble. Here, all minor
objects restricted to the molecule, such as atoms or bonds, are also deleted, as well as all minor
objects which refer to deleted atoms, for example bonds, rings and groups which partially or fully
overlap the atoms of the deleted molecule.

Object duplication will trigger a dup property invalidation event in the new ensemble. Properties
such as unique IDs may be defined to not survive duplication even if there are no structural changes
in the objects they are linked to. Deleting a molecule, or merging ensembles, will trigger a merge
invalidation event. Again, properties may be set up to react to this event.

There are no similar functions for rings or ring systems. These are intended to be managed
completely by the system. Groups do have deletion commands - but in that case, the deletion
operation applies only to the group object. No atoms contained in the group are deleted if the group
is removed.

Groups

Groups are a generic mechanism to manage groups of atoms and/or bonds. In contrast to other minor
object of ensembles they are intended to be managed by the application. There are fewer
automatisms for maintaining groups and group data than, for example, molecules and rings.

The basic objects which forms a group are atoms and possibly also bonds. However, in addition to
atoms, groups may contain other groups. This nesting can be of arbitrary depth, but no cyclic graphs
must be produced.

Automatic group set-up

There is an automatic set-up mechanism for groups, but this function will simply initialize an empty
group set.

Example:

ens groups [ens create CC]

will report an empty list.

Creation and modification of simple groups

Groups can be created, changed and deleted with a standard set of commands:
set glabel [group create $ehandle {1 2}]

group add $ehandle $glabel 3

puts [group get Sehandle $glabel G SIZE]

group remove S$ehandle $glabel 1

group delete S$ehandle $glabel

This short sequence of commands show the most important methods to set up, modify and delete

groups. The first line creates a group which contains the atoms of the ensemble with the labels 1 and
3. The commands returns the group label of the new group. The next line then adds atom 3 to the

group. This kind of operation does not change the group label. The standard property data request
for group property ¢_s1zE reports 3. Individual atoms may be removed from a group, and groups
may be deleted, as shown in the final two lines of sample code.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

Atoms may be a member of any number of groups, and they may be listed more than once within a
group.

Groups and substructure matching

In an alternative way of defining groups, they may also be generated as a side effect of a successful
substructure match command.

Example:
set st [ens create {C[N+] (=0) [0O-]1}]
set ss [ens create {N(=0)=0} smarts]

match ss -creategroup 1 $ss $st

This example will set up a group with the atoms of the matched nitro group on the structure. The
substructure match routine is smart enough to recognize the equivalence of the two nitro group
forms. Using appropriate match options, it is possible to mark all instances of a substructure by
generating a group for every match.

Every successful match will add more groups, so in case a structure is used for multiple matches and
the accumulation of groups is not desired, they should be removed all prior to matching:

group delete $st all

Recursive groups

Groups may contain other groups, In case a group is deleted which is contained in another group,
the containing group is also deleted. Recursive groups may be set up and modified by script
commands, just as normal groups:

set glabell [group create S$ehandle {1 2}]

set glabel2 [group create S$ehandle [list [list “group” S$glabell] 3 4]

puts [group atoms $ehandle $glabel?]

puts [group objects $ehandle $glabel2]

group delete $ehandle $glabell

puts [ens groups $ehandle]

This sample code first creates a basic group with atoms 1 and 2. Then, a second group is created
which contains the basic group, and atoms 3 and 4. The distinction between atoms and groups as
member objects is made by prefixing the group label by the object class identifier group. If no object
class identifier is used, the object label is assumed to describe an atom. It is also possible to explicitly
prefix atom labels by an afom object class identifier. The newly created recursive group is assigned
a label, just as a standard group. The atom list of the recursive group will only list atoms 3 and 4.
For a full member object listing, the objects command is available. In this case, it will report

{group 1} {atom 3} {atom 4}
The format is a fully qualified object list, which could be used in a group create statement.

Deleting the simple group which is included in the recursive group will also destroy the recursive
group, as demonstrated by the final statement which returns an empty list.

In case all atoms which are a member in a recursive group are needed, directly or indirectly as part
of an included group, a simple recursive function can be used:

proc all groupatoms {ehandle glabel} ({

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 47

CACTVS Tcl Scripting Introduction

set alist [group atoms S$ehandle S$glabel]
foreach glabel [group groups $ehandle $glabel] {

set alist [concat $alist [all groupatoms $ehandle $glabell]]
}

return $alist

Recursive groups and 3D searching

Recursive groups were originally introduced for the implementation of 3D structure searching. In
3D structure searching, coordinates of structure features which need to be matched are often defined
in a dependent fashion. For example, the centroid of a matched ring should be within a certain
distance to another atom.

In the toolkit, this is modelled by using groups and recursive groups as part of the substructure to
represent these relationships. For example, the distance constraint is encoded as a substructure
group containing an atom and the centroid group, which contains the atoms of the ring. When a
match is checked, coordinates of matched structure fragments are accessed by the substructure
groups. The distance can only be computed after the centroid coordinates have been established, and
these can only be obtained if the ring substructure atoms where matched onto structure atoms with
defined coordinates.

These group hierarchies are set up automatically when, for example, an ISIS 3D query file is read.
But since the mechanism is general, it is also possible to configure it manually.

Example:

set ss [ens create clcccccl.N smarts]

set centgroup [group create $ss {1 2 3 4 5 6}]

set distgroup [group create $ss [list [list “group” S$centgroup] 7]
group set $ss S$centgroup G _CONSTRAINT centroid

group set S$ss $distgroup G _CONSTRAINT [list distance [list 3.0 4.5]]

This substructure can now be used for 3D matching and will only match those 3D structures where
the distance between the centroid of the phenyl ring and the nitrogen atom is between 3 and 4
Angstroms. The extraction of coordinate information and the checking of the 3D constraints is
automatically handled within the substructure match routine.

Traps and Pitfalls

There are two cross-referencing commands which are very similar, but perform clearly distinct
operations:

group group $ehandle $gspec

will return the group label from an alternative group specification, such as an index or a property
value look-up. This is the same mechanism as in the atom atom or bond bond commands.
group groups $ehandle $gspec

The only typographical difference is the plural s in groups (vs. group). This command lists all groups
with a a member of the group, which is always a different result since a group cannot contain itself.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

String Representations of Structure Data

The Cactvs toolkit supports several methods of encoding and decoding structure and reaction
information as strings.

SMILES

CAcTvs supports sMILES nearly completely. The only unsupported feature is the encoding of
higher-order stereochemistry (square planer, pentagonal bipyramid, octaeder). After the SMILES
structure code part, separated by whitespace, an optional name may be added. This information is
stored in property £_NamME after decoding. SMILES strings may be stored and generated as property
E_SMILES.

The toolkit contains an implementation of the original version of the Unique SMILES algorithm.
However, the published version is no longer identical to what Daylight is actually using in its
software. It is possible to generate Unique SMILES from an ensemble with this toolkit, but it does
not match the results of Daylight software for almost any non-trivial structure. For structure
comparison, we strongly recommend the use of the native CAcTvs structure hash codes instead of
Unique SMILES strings.

The £_sMILES property has the following computation parameters which influence the style of the
result string:

* usearo (default 0) If set, aromatic atoms will be output in lower case, and double
bonds in aromatic systems will not be output explicitly as a
Kekulé system. The default output style is as a Kekulé system
with fully specified bond orders and element symbols starting
with an uppercase letter.

* useisotope (default 1) If set, atomic isotope information (property A 1soTope) will
be encoded in the sMILES string if it is available. If this flag is
not set, isotope labelling information will be ignored even if it
is present.

* usemapping (default 1) If set, atom mapping information (property 2 MappING) will
be encoded in the sMILES string if it is available. If this flag is
not set, atom mapping information will be ignored even if it is
present.

* usesmarts (default 0) Encode as SMARTS, with explicit hydrogen counts at all
atoms, and #1 notation for hydrogen atoms which are not
encoded as hydrogen counts of core atoms.

* usestereo (default 1) If set, atom and bond stereochemistry (properties
A LABEL STEREO and B LABEL STEREO) will be encoded in
the SMILES string. An attempt will be made to compute
B_LABEL STEREO if it is not present, but not for
A LABEL STEREO. If the computation fails, no error is
generated and stereochemistry is not output. If this flag is not
set, stereochemistry will be ignored if it is present.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 49

CACTVS Tcl Scripting Introduction

* usesuperatom (default 0) If set, super atoms will be included in the sMILES string with
their symbol. This can result in illegal sMILES strings. If the
flag is not set, super atoms in the ensemble are ignored.

* unique (default 0) If set, the result string will be Unique sMILES according to the
original publication.

Example:

set ehandle [ens create clcccccl]; ens new Sehandle E SMILES {} {usearo 0}

This sample code will first decode an ensemble from a SMILES string. The original SMILES string is
stored as property E_sMILES. The next statement re-computes the sMILES string, but with the
computation parameter usearo set to 0. The result is “C/=CC=CC=CI".

SMARTS

Cactvs supports nearly the full sMarTs feature set, including Recursive sMARTS. The only exception
is again high-order stereochemistry.

Reaction SMILES

Reaction SMILES is fully supported. The optional middle part of a reaction specification will be
decoded as a reaction ensemble with property E REACTION ROLE set to agent. Reaction SMILES
strings may be stored and generated as property x sMILES. Optional atom mapping labels in
Reaction sMILES expressions cannot be negative numbers. Atom mapping labels will be deposited
and read from property A MAPPING.

Example:
set xhandle [reaction create {[CH2:1]=[CH2:2]>[Pt]>[CH3:1][CH3:2]}]

set xmiles [reaction new $xhandle X SMILES]

The first sample line creates a reaction with three ensembles. By looking at property

E_REACTION ROLE they can be identified via their roles of reagent, product, and agent. The
ensembles are really always listed in the reaction in that order when they are added by the Reaction
sMiLES decoder, but this is not a sequence which should be relied upon for general reaction
processing. The second line re-computes the Reaction SMILES string, which in this case is
completely identical to the input string.

SMIRKS

The toolkit supports the use of SMIRKS for the description of reaction transforms. The advanced
version is supported - i.e. the creation and deletion of atoms within a transform is supported.

However, stereochemistry change, both on atoms and bonds, is not yet possible. The only atom
attribute change which is already fully supported are changes in formal charge. The creation,
deletion and change of bonds within a transform is completely implemented.

Example:
set ehandle [ens create C=C]

set thandle [reaction create {[C:1]=[C:2]>>[C:1]-[C:2]} smirks]

ens transform $ehandle $thandle

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

SMILES and SMARTS extensions

A number of useful backward-compatible extensions were introduced into the SMILES and SMARTS
decoders:

Attribute ranges

At all places where an attribute count is expected, a range may be specified instead. Ranges are
enclosed by curly braces. They may be open on either or both sides, with an implicit lower limit
of 0 and upper limit of 31.
Example:

ens create {[C;H2,H3,H4]} smarts

ens create {[C;H{2-4}]} smarts

ens create {[C;H{2-}]} smarts
The first example is standard sMaRTs. The other lines show how to use ranges for more compact

and readable encoding.

Implicit superatoms

If an atom cannot be decoded as an element symbol, or, in a SMARTS context, as a SMARTS
expression, a superatom will be created. This feature is an option of the decoder and not active
in all contexts. The superatom symbol will be stored in property o SUPERATOMSTRING.

Example:

ens create {[Boc]}

Explicit superatoms

Atom symbols starting with a tilde character ~ in a bracketed atom expression are decoded as
superatoms. The superatom symbol (2 suPERATOMSTRING) does not include the tilde. The
superatom symbol may consist of digits and letters, plus the underscore and minus characters.
The superatom may possess additional attributes or be a port of an SMARTS expression, but
these must be separated by explicit logical expression operators, such as ’,” or ’;” because the
usual rules of tokenization are not used in order to determine the end of the superatom symbol.

Example:
ens create {[~COOH]}
Special atoms

The following special atom types are introduced:

HA Generic hydrogen acceptor. This checks property A HYDROGEN BONDING.
HD Generic hydrogen donor. This checks property A HYDROGEN BONDING.

D Deuterium. This checks o TYPE, A ELEMENT and A ISOTOPE.

T Tritium. This checks 2 TYPE, A ELEMENT and A ISOTOPE.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 51

CACTVS Tcl Scripting Introduction

Attributes
The following extra query attributes and attribute extensions are recognized:
a

If used without a count, it corresponds to the standard sMILES meaning of aromatic. In this
toolkit, this attribute can optionally take a count which is interpreted as the number of aromatic
rings the atom is a member of.

Example:
ens create {[C;a{2-}]} smarts

This defines a carbon atom which is a member in two or more aromatic rings, for example the
two centre atoms of naphthalene. The checked property is A ARORING COUNT in the extended
case, A_ISAROMATIC in the standard case.

(¢

Number of n-electrons in a ring the atom is member of. The checked property is
R N _PI_ELECTRONS.

Example:

ens create {[S;e6]} smarts
X

Ifused with a count, it is the standard sMILES neighbour count. If used without a count, it defines
a hetero (no carbon, no hydrogen) atom.

Examples:

ens create {[X]} smarts
ens create {[X2]} smarts

The first example will match any hetero atom. The second example matches any atom which has
exactly two neighbors. In the standard case, the checked property is A NEIGHBORS. In the
extension case, an expression involving A_TYPE and A_ELEMENT is generated.

X
Number of hetero-atom substituents on an atom.

Example:

ens create {[C;x2]} smarts

This will match a carbon atom which has two hetero neighbors. The checked property is
A_HETERO_SUBSTITUENT COUNT.

Special bond types

A bond described solely by an exclamation mark is interpreted as a bond which must not be
present in a substructure match (the decoded B_TYPE property value is set to nobond).

Example:

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

ens create {C!C} smarts

is a (disconnected) substructure where the two substructure atoms must not be matched on
adjacent structure atoms, but

ens create {C!-C} smarts

is a substructure where the carbon atoms are linked by a bond which is not a single bond.

Non-overlapping recursive SMARTS fragments

By default, the substructure which is part of a Recursive SMARTS definition has no knowledge
which part of the structure was already matched by the basic part of the substructure, and it is
free to match on any atom in the substructure, even if it is already covered by another
substructure atom in the hierarchy above.

This toolkit allows the exclusion of the part of the substructure which was already matched. This
feature can be activated by using a double $$ as initiator of a recursive SMARTS specification
instead of a single $.

Example:

set ssl [ens create {CN[$(CN),$(CO)]} smarts]
set ss2 [ens create {CN[$S(CN),$$(CO)]} smarts]
match ss $ssl CNC

match ss $ss2 CNC

The first SMARTS structure is a classical Recursive SMARTS definition. The second one uses
the same fragments but the extended syntax to prevent the recursive fragments to match on any
structure part which was already matched. On the simple sample compound dimethylamine, the
first match succeeds with the C-N fragment, because the carbon fragment atom matches on the
second carbon atom, and the nitrogen fragment atom matches onto the central nitrogen atom,
without any knowledge that this atom was already matched by the nitrogen atom in the base
fragment. The same match with the extended syntax fails, because the nitrogen fragment atom
cannot be matched - the central nitrogen atom in the structure is not allowed, because it is
already covered by the base fragment.

Exclusion atoms

Negated recursive fragments are often not very useful, because they tend to be matched on
unexpected structure parts.

Example:

set ss [ens create {C[!$(Cl)]} smarts]

match ss $ss CCl amap

This match attempt will actually succeed, because the substructure atom which should be not
chlorine is matched onto one of the hydrogen atoms in the structure. The atom match map in

variable amap will contain the list “{1 1} {2 3}”, showing that the first atom of the substructure

was matched on the first atom of the structure (carbon on carbon), and atom 2 (the not chlorine
atom) on atom 3 (one of the hydrogen atoms).

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 53

CACTVS Tcl Scripting Introduction

For atoms and fragments which should not match in any way, the CAcTvs toolkit implements the
concept of exclusion atoms and fragments. Exclusion atoms are specified by the attribute *.
Exclusion fragments are substructure fragments which consist only of exclusion atoms.
Example:

set ss [ens create {C["Cl]} smarts]

match ss $ss CCl

This match attempt will not succeed. Matches with exclusion atoms will fail whenever these
atoms can be matched in some way. For this purpose, all exclusion atoms which are linked
together by bonds are treated as a joint fragment.

Example:

set ss [ens create {C["O]["C]} smarts]

match ss $ss COC

match ss S$ss CO

Here, the first match attempt will fail, because the carbon atom contains an OC substituent,

which is prohibited by the sequence of exclusion atoms. The second attempt will however
succeed, because there is no way to match the whole group of exclusion atoms.

Groups of exclusion atoms are processed after all non-exclusion atoms have been processed,
and at that moment they are treated as substructure extensions where each branch must be
assigned a location - only that a failure to find such a location is considered a success.

Example:

set ss [ens create {["C]O["C]} smarts]

match ss $ss COC

match ss $ss COO

match ss $ss CO

The first match attempt will fail, because all independent exclusion groups could be assigned
matches. The second and third examples will match, because it is not possible to assign both

non-carbon exclusion branches independent locations since there is only one carbon, and
overlaps of exclusion fragments are not allowed.

In case of ambiguities in the string syntax, the standard interpretation has precedence. So, [Se] is a
standard selenium atom, and [S;e] a sulphur atom which is a member of a ring with one = electron.
The only exception is the pseudo atom HA - conceivably, that atom could be interpreted as an
aliphatic atom with one hydrogen neighbour.

SMILES and SMARTS traps and pitfalls

SMILES and SMARTS are easy to use and powerful and play a prominent role in typical script
applications developed with the CAcTvs toolkit. However, there are some problems which appear to
be encountered frequently. The following section describes some common errors and correct
solutions which address these problems.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

SMILES/SMARTS decoder mode

The decoder mode influences the interpretation of the structure string. Example:
ens create clcccccl hadd
ens create clcccccl nohadd

ens create clcccccl smarts

These three decoder statements produce three clearly different internal structure
representations. The first (which is the default which is also used if no decoder mode is
explicitly set) produces a benzene molecule complete with hydrogen, with alternating single and
double bonds in a Kekulé structure. When used as a substructure, this structure will not match
arbitrary phenyl rings, except benzene, because the hydrogen atoms are part of the structure and
need to be matched too.

The second line is similar, but no hydrogens are added, so only six carbon atoms are generated.
This structure will match phenyl rings - but in the default match mode, where aromatic bonds
match both single and double bonds, will also match a hexane or hexene ring.

Only the last sample line is a complete SMARTS decoding - here, the match attribute aromatic
is set as an atom flag on all the carbon atoms, because the atom symbols are specified in lower
case. Since these carbon atoms, if used as a substructure, will only match aromatic structure
atoms, this substructure specification will nof match hexane or hexene.

Hydrogens

Cactvs generally wants to work with structures where all hydrogen atoms are defined. Property
computations will often report misleading results if these routines are called with
hydrogen-depleted structures. Therefore, hydrogen atoms in SMILES are expanded when a
structure is created from the string. This is not the case in SMARTS decoding, and additionally,
the H attribute in SMARTS is a hydrogen count, while in SMILES it specified a hydrogen atom.
The alternative notation via the element number must be used in case explicit hydrogen atoms
should be generated from SMARTS string. Note that explicit hydrogens such as in [NH2] or
[#1] are always expanded, even if the nohadd decoder mode is used. In order to get rid of these
atoms, an ens hstrip command can be executed.

(1) ens create {[NH2])

(2) ens create {[H][N][H]}

(3) ens create {[N;H2]} smarts

(4) ens create {[NH2]} smarts

(5) ens create {[H][N][H]} smarts

(6) ens create [[#1][N][#1]} smarts

The first line decodes into a nitrogen atom with two hydrogen atoms attached. Since the number
of hydrogens is explicitly specified on all atoms, the selection of the sadd (default) or nohadd
decoder modes (but not smarts, see examples below) does not make any difference. In both

modes, the second line decodes to exactly the same structure, the only difference being the order
of the atoms in the atom list.

Line three is where things begin to become interesting. This line will decode into an ensemble
with a nitrogen atom with the additional query constraint of needing to have exactly two

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 55

CACTVS Tcl Scripting Introduction

hydrogen neighbors. If the structures defined in line one or two are used for substructure
matching, they will match ammonia (NH;), mapping the two substructure hydrogen atoms onto
two of the structure hydrogen atoms and leaving the last structure hydrogen atom unmatched.
The substructure generated in line three will nof match, because the nitrogen atom in that
structure must possess exactly two hydrogen neighbors.

Line four demonstrates a Cactvs SMARTS decoder extension. In original SMARTS, this
encoding is completely equivalent to that of the previous line, but CAcTvs introduces a subtle
difference. If an element symbol is directly followed by a hydrogen count, without any logical
operators, or other query attributes between these atom definition components, the hydrogen
atoms are instantiated. This substructure string will expand into three atoms - one nitrogen and
two hydrogens. The nitrogen atom will still bear the constraint that in substructure matching it
must possess exactly two hydrogen neighbors. However, this substructure is able to provide
explicit substructure/structure atom correspondence information for the hydrogen atoms, which
can be useful.

SMARTS encodings as shown in line five are usually written unintentionally. This string defines
a substructure of three atoms - a nitrogen atom and two any atoms, which both must possess
exactly one hydrogen neighbour. H is the Aydrogen count attribute in SMARTS, not a hydrogen
atom. If no element is specified as part of the atom definition, it is translated into an any match
atom which then used to attach additional constraints. Syntactically this encoding is absolutely
correct, and the query will work as defined in the SMARTS standard, but the results may be
unexpected, since [H] does not encode a hydrogen atom. Line six implements correctly what
may originally have been intended by the construct in line five: Two explicit hydrogen atoms,
and a nitrogen atom as a simple SMARTS substructure without additional attributes, as in line
one or two.

Serialized major object strings

Major objects, such as ensembles, reactions, networks, tables and datasets, may be packed into a
string. This string captures the full state of the object (including, by default, all subobjects). If no
filtering operations are used to restrict the type of data which is packed into the string, it is a lossless
method of encoding the object state. Technically, this string is a base-64 encoded, zlib-compressed,
serialized object, using XDR encoding for platform-neutral storage of byte-order dependent data.
After removing the encoding and compression layers, these strings are very similar, but not
identical, to the native CacTvs binary file formats for I/O of these objects.

Since the base64-encoded packed string is guaranteed not to contain any non-printable or
problematic (quotation, etc.) characters, these strings can be conveniently sent by mail, stored in
database columns, etc. Packed object strings are portable and platform-independent.

Only major objects may be packed into packed formats.

Example:
set packstring [ens pack [ens create CCC]]

set newens [ens unpack $packstring]

Packed object strings are significantly larger than, for example, a molecule representation as a
SMILES string. However, this string will preserve all attached ensemble and minor object data, such
as 2D and 3D coordinates and other properties, which cannot be done with SMILES, SLN or other
simple string encodings.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

SMILES and SMARTS files

Both SMILES and SMARTS, including the reaction versions, can be saved to and read from
structure files. This is a built-in file format. The SMILES/SMARTS format is automatically
detected, including whether it contains reactions or structures. It is not possible to read Reaction
SMILES files in ensemble or molecule input mode, and vice versa. During the format analysis
procedure, the read mode is set appropriately and should not be changed.

In the simplest case, SMILES/SMARTS files are simply text files which contain a
SMILES/SMARTS string on each line. After the actual structure code, a name field (property
E_NaME) may follow separated by whitespace.

Files are by default read with the addition of implicit hydrogens, just as it is the default when
decoding a SMILES string with an ens create statement. This is independent of the explicit
hydrogen addition or removal set as a file attribute. The file-wide hydrogen processing is applied to
every ensemble read from the file handle regardless of the file format. The implicit hydrogen
addition when reading SMILES files is the result of a flag set on the decoder which is invoked as
part of the record input process, long before the postprocessing operations. In case this addition of
implicit hydrogen is not desired, for example when reading substructures from file, it can be
disabled by the statement

molfile append $fhandle flags noimplicith
Besides structure data lines, SMILES files may contain the following types of additional lines
without raising an error:

Empty lines

These are silently ignored

Comment lines

These are lines starting with an *#’ character. They are ignored.

File property lines

These are lines beginning with the magic character sequence "#F’ and containing a property
name and a property value. When a line like

#F content New lead series

isread, a property F_*CONTENT* is attached to the file object (or F_CONTENT, in case that property
is defined) and set its value to the trimmed remainder of the line (“New lead series” in this case).
This data can be retrieved with a

molfile get $fhandle F_*CONTENT*

command. When the file is opened, all file properties which occur before the first structure line
or ensemble property line are immediately available without reading any records. Later file
property data becomes available as soon as the line has been read as a result of normal structure
input.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 57

CACTVS Tcl Scripting Introduction

Ensemble property lines

Similar to file property lines, these are lines which begin with the magic characters "#E’. All
ensemble properties which are found before the actual structure line is read are attached to the
ensemble as regular property data, analogous to the processing of file properties. If a set of lines
like

#E E_IDENT PharmaconX123

cco

#E E _IDENT PharmaconX124
CCS

is encountered, the property £ 1DENT (here specified in CAcTvs nomenclature, and since this is
a defined property, no name standardization takes place) is attached to both records. The first
read command will retrieve ethanol (CCO) with £ 1DENT set to PhramaconX123, and the
second input operation fetches CCS and sets its E_1DENT to PharmaconX124.

Folded lines

In an attempt to counter a common problem in e-mailed sMILES files, the input routine will
attempt to detect the folding of long lines in the original file into two shorter lines by a mail tool
or another processing application. If a structure could not be successfully decoded from a single
line, an attempt is made to join the next line to the first line and decode that the joined line. This
is not foolproof, but often works as a reasonable makeshift auto-correction mechanism. Only a
single line will be merged. If the file is even more broken, its problems should be fixed at the
source.

Indented lines

The indentation level (number of whitespace characters) of sMILES and SMARTS data lines is read
into property E_ LEVEL. Thus, a file structure like

CC[Cl,Br,I]lgeneric
CCClchlorinated
CCBrbrominated
CCIiodated

can be conveniently used to store hierarchies. The first line will be read with E_LEVEL set to 0,
and the other lines (assuming a tab character is used) with £ 1EVEL set to 1. If £ LEVEL is set
for an ensemble when it is written to a sMILES file, indentation will automatically be added. If
this property is not present, no indentation is used.

Structure names

Everything to the right of the first word of the data lines (which is decoded as the sMILES string
proper) is read as structure name and stored in property £ NAME. Example:

CCC propane

If this line is read, the structure is decoded, and its name (property E_NAME) is set to propane.
The name part will be trimmed on both sides, but not split. Any whitespace after the beginning
of the name part and not reachable by an uninterrupted sequence of whitespace characters from
the end of the line will be preserved. Example:

CCC propane 74-98-6

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

Here, the name will be set to “propane 74-98-6. Further processing of the name will have to
be performed by explicit script commands. Note that indexing of string words can be very
helpful for this task, as in

ens set $ehandle E CAS [ens get $ehandle E NAME (1)]

Other structure string representations

The toolkit supports the work with a number of additional string representations:

Hex-encoded SMILES

In standard structure decoding contexts (such as in an ens create command, but not while
reading files), an attempt is made to interpret a string not just as a SMILES string or a serialized
object string, but also as a hex-encoded SMILES string if the first two methods fail.
Hex-encoded SMILES is used in a number of Daylight tools.

Example:

ens create [encode -hex CCC]

PubChem Compound IDs (CIDs)

A simple integer is interpreted to represent a PubChem compound ID. The structure is looked
up on the interpet.

Example:

ens create 1

Cactvs Minimols

A CacTvs MiNIMoL is an extremely compact representation of a structure with all attributes which
are usually of relevance for structure searching. In contrast to serialized object strings, this
format does not encode arbitrary data, but only a fixed set. Compared to SMILES and similar
formats, the information density is much higher, and decoding much faster because for standard
structure matching o proeprties need to be computed. Minimols can be computed as property
E MINIMOL, and decoded direclty in ens create statements.

Example:
set mm [ens get [ens create CCC] E MINIMOL]

set eh [ens create $mm]

CAS Numbers

Cactvs recognizes CAS numbers and will attempt to decode them by means of a PubChem
lookup.

Example:
set cas [ens get [ens create CC(=0)C] E CAS]

set eh [ens create 67-64-1]

This is a rather expensive operation and slow for larger sets of compounds.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 59

CACTVS Tcl Scripting Introduction

Sybyl Line Notation (SLN)

SLN is fully supported, but not as a built-in format. Encoding and decoding of SLN strings must
be performed via string file operations.

Example:

filex load sln

set sln [molfile string [ens create CCC] format sln]

set fhandle [molfile open $sln s]

set ehandle [molfile read S$fhandle]

molfile close $fhandle

In this code sequence, first the SLN 1/O handler is loaded (in most toolkit versions, it is not a
built-in format). The second line shows how to generate an SLN string by using the molfile
string command. The last three line demonstrate the decoding of an SLN string by first

opening the string as a file (mode s), reading the first record from the string file, and finally
closing the structure file handle.

JME strings

JME, the native format of the popular JME Java editor applet by P. Ertl of Novartis, is also fully
supported as an external I/O module.

Work with this format follows the same procedures as the SLN case.

Wiswesser Line Notation

There is a standard property definition for WLN data called £_wrn, but currently neither
encoding nor decoding of this format are supported.

Envelope encodings of SMILES and other structure strings

The toolkit contains utility commands for encoding and decoding arbitrary strings into and from
various encoding formats. The encode and decode commands are fully explained in the
auxiliary command section.

Examples:

molfile read [set fh [molfile open [decode -zip64 $z] s]]; molfile close $fh
ens create [decode -url $z]

puts “"

The first line shows how to read a z/ib- or gzip-compressed, base64-encoded string which is an
image of an arbitrary structure record, for example an MDL Molfile. The second lines
demonstrates the decoding of an URL-encoded SMILES string. The final example shows how

strings with characters which need to be protected, such as "#’ or ’&’, can be output in the
context of a CGI Web application.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

Property Data Types

All property data has a defined data type. The data type determines how the information is internally
managed. All memory, file handles, etc. which are required by a data type are handled by the system
and are automatically released when property data is deleted, regardless whether it is a direct
discard, or an indirect effect by the deletion of objects holding the data or the result of an invalidation
because of object relationship changes.

Data type handlers

Every data type is associated with a handler module. This handler module provides a predefined set
of functions, such as decoding, duplication, deletion, and output formatting. Handlers for the most
common data types are built-in. Additional handler modules may be loaded at runtime. This may
happen either explicitly, or indirectly by referring to a property which declares itself in its
description record to be of a data type which the system does not yet know about. In that case, a
handler module is automatically looked up. If it cannot be found, the loading of the property
definition fails.

Examples:
typex load floatvolume

filex load gausscube; set ehandle [molfile read test.cub]

The first command explicitly loads the handler for floating-point volume data, which is not in the
built-in set. The second line does it indirectly: First the I/O handler for Gaussian cube files is loaded
and then a sample cube file is read. The input routine tries to attach the volume data found in the file
to the ensemble receives the input data, using the float volume data type. At the moment the input
routine refers to property E_vOLUME, its definition is looked up, and when the property definition file
for £_voLuME is read, a handler for its data type p_rvoLuME is located and loaded. Both the paths for
property look-up and for I/O handler look-up can be configured on the scripting language level via
the global cactvs () control array variable.

Storage slots

Property attached to objects is kept in slots of a fixed size. If the data is of variable size, part of the
slot structure is used to contain a pointer to allocated memory. Because it is more efficient to use only
the slot structure, there are several data types for common storage requirements such as float pairs
(used for example for 2D display coordinates) which could be stored as a vector, but are
implemented as a separate data type. 3D coordinates, even though they always require just 3
dimensions, are manage by the standard float vector type - since three floating point values do not
fit into the slot structure, there is no notable efficiency gain in providing a specialized 3-element
vector type. Since the slots contain room for both a data pointer and a length field, vectors may be
of variable and non-uniform length on each individual data item.

Internal and external representation

In some cases, there is a distinction between the internal and external representation of property
data. For example, internally there is only a single simple floating point type, which stores the data
as a double value. However, export functions may distinguish between a single-precision float and
a double-precision float, and consequently these two data types have separate output functions.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 61

CACTVS Tcl Scripting Introduction

Similarly, various integer types are internally all stored in a long value, but may be output as
boolean, byte, short or long values.

Naming conventions

In the scripting environment, data types are usually addressed by their readable name. data types
also have a system name, which can be used as an alias, but usually it is more convenient and more
readable to refer to the floating point volume data type as fvolume instead of p_ rvorLuMe. The latter
is the system name which is for example used in property description files.

Subscript names for data with identifiable fields are always spelled in lower case. They must not
contain whitespace or punctuation characters.

Built-in data types
The data types in the standard built-in set are:

* boolean Internally a long integer, this type as import and export functions for
encodings such as T/F, and may be stored as a bit or byte on compact
formats. This type is not indexible.

* byte An 8-bit signed integer. Internally managed as a long integer and not
indexible.

* short A 16-bit signed integer. Internally managed as a long integer and not
indexible.

° int A 32-bit signed integer. Internally managed as a long integer and not
indexible.

° uint8 A 64-bit (8-byte) unsigned integer, which is primarily used for

hashcodes. Not indexible. The standard method of input and output for
this data type is as a 16-character hex string, not a decimal number.

* float A single-precision (32-bit) floating point number. Not indexible.
Internally stored as a double precision float.

* double A double-precision (64-bit) floating point number. Not indexible.

* string An arbitrary-length zero-byte terminated ISO-string. It may contain any

character, including control characters such as linefeeds, except the zero
byte. This type can be indexed on a word basis.

° unicode An arbitrary-length Unicode string. Internally, it is encoded as wchar t
platform-dependent characters, with a zero byte word as terminator.

e shortstring An optimized string with a maximum length of 8 bytes (16 on 64-byte
platforms, but I/O will be limited to 8 characters). Numeric field
indexing refers to the character position, not the word as in normal
strings.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

e index

e bitset

* intpair

* intquad

* floatpair

e qualifiedint

e qualifiedfloat

* blob

CACTVS Tel Scripting Introduction

This type contains 4 unsigned short integers with a special function. The
four integers are used to encode group memberships and membership
numbers on the ensemble and molecule levels. There are two number
pairs, one for the ensemble and one for the molecule attribute. The first
number of each pair is the class number, the second the instance number
within that class. The fields may be directly addressed by the predefined
subscript names eclass, ecount, mclass and mcount.

This is a bit set with a maximum of 32 positions. The names of the
positions are specified in the property enumeration field. Using these
names, bits may be addressed individually in a property-dependent
fashion. Alternatively, a numeric subscript in the range 0...31 can be
used.

A pair of two 32-bit signed integers. They may be individually
addressed with the predefined subscript names x and y.

A quartet of four 16-bit signed integers. They may be individually
addressed with the predefined subscript names x/,y/,x2 and y2.

A pair of two single-precision floating point numbers. They may be
individually addressed with the predefined subscript names x and y.

This is an integer with additional precision, validity and range
information. Internally, it consists of a base value, a qualifier (by default,
eq, other possible qualifiers are le, It, ge, gt, approx and missing), and
positive and negative integer deviation ranges. If the qualifier is missing
or null, the default output is N/4, and the value or deviations are ignored.
Ifthe qualifier is eq, and no ranges are set, the display format is the same
as for an integer. If the qualifier is not eq and not missing, the output is
the base value, followed by the identifier, and then the value range. If
positive and negative deviations have the same value, the range is
displayed as +/-range, otherwise as a pair of negative and positive
deviations with explicit signs. For retrieval, specific subfields value,
qualifier, +delta, -delta, delta, lowbound and highbound can be used to
obtain specific information. delta is the sum of positive and negative
deviations, lowbound the base value minus the negative deviation, and
highbound the base value plus the positive deviation. For input, a
qualified integer may be specified as a simple integer, a full
specification of all fields, or several abbreviated forms.

This datatype is very similar to the qualified integer type, except that the
base value and the deviation ranges are floating point numbers.

A raw data block of variable length. The data may contain any byte
values, including zero bytes. It is indexible via a numeric subscript
allowing access to individual data bytes, which are returned or set as
unsigned bytes.

Xemistry GmbH © 2002-2024

Cactvs Tcl Scripting Introduction 63

CACTVS Tcl Scripting Introduction

e date

e url

e choice

e bitvector

This type describes a date, with a precision of one second. The value
used for normal retrieval is an ISO time value (YYYY-MM-DD
HH:MM:SS). For setting, the conversion routines understand a couple
of standard date formats and will detect them automatically.
Additionally, the raw numerical system time value (seconds since
1970), and reserved words such as now and tomorrow are understood.
When a toolkit version is providing Tecl scripting capabilities, it will use
the rather capable Tcl time decoder in addition to scanning its private
lists of standard formats. In case the raw numerical value of a date item
is needed for custom formatting, for example with the Tcl clock format
command, the nget command should be used. For retrieval only, the
reserved subscripts year (including century), month (0-11), day (1-31),
hour (0-23), minutes (0-59), seconds (0-59), weekday (0-6, week begins
on Sunday) and yearday (0-365) give access to specific time unit values.

This data type encodes an URL. In most respects, it is similar to the
string data type, but instead of word indexing, it may be indexed for read
access only by the reserved subscript names directory (directory part of
pathname, assumes fully specified path name or terminal /), file
(filename part of pathname, assumes fully specified path name or
terminal /), hash (page location), host (hostname:port combination),
hostname (pure hostname without port), href (full url), ip (host IP
address), password (password portion of the access credentials, if path
of the url), pathname (path to the object on the server, excluding /4ost,
password, user, hash, search fields), port, protocol, search (query part
of'url), target (always empty), text (always empty), user (user portion of
access credentials, if specified in the URL), and ipaddr (resolved host
name). These field names are the same as in the JavaScript /ink object,
plus some custom additions (user, password, ipaddr). In some output
contexts a hyperlink will be written instead of the string data value, for
example in HTML table output. This data type currently cannot store
target and link text information. These fields will always be empty.

This is a wrapper data object which can hold items of different, but
predefined datatypes. The field definition of the associated property
definition declares possible values by associating a field name either
with a primitive datatype (such as inf), or a refer to a property (such as
E NCBI PUBLICATION PATENT). Using the latter construct, very
complex nested datatypes of variable layout may be constructed, since
the refererred properties may themselves be of a complex structure,
including being of the compound and choice data types. The default
output format is a list of the name of the field encoded in this object
instance, and the value proper. In addition, subfields value, datatype,
property, index and name may be used to retrieve specific aspects of a
datum.

A bit vector of variable length. Individual bits can be selected via a
numeric subscript. As in the bit type, bit positions may be also assigned
names via the property enumeration values. and these names used for
indexing

Xemistry GmbH © 2002-2024

CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

bytevector

shortvector

intvector

floatvector

doublevector

tensor

xyvector

stringvector

unicodevector

uint8vector

compoundvector

choicevector

diskfile

CACTVS Tel Scripting Introduction

An unsigned byte vector of variable length. Individual elements can be
addressed via a numeric subscript.

A signed 16-bit integer vector of variable length. Individual elements
can be addressed via a numeric subscript.

A signed 32-bit integer vector of variable length. Individual elements
can be addressed via a numeric subscript.

A 32-bit single precision float vector of variable length. Individual
elements can be addressed via a numeric subscript.

A 64-bit double precision float vector of variable length. Individual
elements can be addressed via a numeric subscript.

A double precision floating point tensor with 9 elements. Individual
elements can be addressed via a numeric subscript. In most respects, this
data type behaves like a normal floating point vector.

A 2D coordinate vector. Each element consists of a single-precision
floating point pair. Numerical element indices will retrieve or set a pair,
not individual numbers.

A variable length vector with string elements. The string elements are
zero-byte terminated ISO-encoded strings of arbitrary length. It is
possible to have NULL elements in the vector. Individual elements can be
selected via a numeric subscript.

A variable length vector with unicode elements. The string elements are
wchar_t-encoded strings of arbitrary length with an all-zero-bytes stop
word. It is possible to have NULL elements in the vector. Individual
elements can be selected via a numeric subscript.

A variable length vector with 64 bit unsigned integer elements.
Individual elements can be addressed via a numeric subscript.

A variable length vector with elements that are compound datatypes (see
above in this paragraph).

A variable length vector with elements that are choice datatypes (see
above in this paragraph).

A reference to a disk file. If the disk file refers to a file in a temp
directory, the file will be automatically deleted when the property data
elements gets deleted. This data type maintains an open file pointer to
the file. Many platforms have limitations on the number of open file
pointers, so this format should not be used when a large number of data
instances are managed. If just the name of a file needs to be stored, it can
be done as a string value. The default retrieval value of the diskfile data
type is its path name. Additional information may be obtained by using
the magic subscript names name (file name, same as default), content
(data content), size, format (MIME type format, if known), mode (mode
bits), owner (owner uid), group (group id), readtime (last file access,

Xemistry GmbH © 2002-2024

Cactvs Tcl Scripting Introduction 65

CACTVS Tcl Scripting Introduction

* mapfile

e dictionary

* tree

* query

* compound

st_atime status field), writetime (last file content change, st_mtime
status field), createtime (last inode change, st_ctime status field).
These indexed attributes are read-only. The time-stamp values are
returned as ISO dates in a context where enumerated values are allowed,
as seconds since 1970 otherwise.

Essentially the same as the diskfile type, but the content is kept in
memory by memory mapping.

This is a hashed array of keyword/value pairs, similar to array variables
in Tcl. Keys data values are arbitrary-length strings. The standard output
is a list of keyword/value pairs (suitable for use with the Tcl array set
command), and this is also the input format (which can be conveniently
generated by the Tcl array get command). This type is indexible by the
keywords which can be different in every data instance. For setting,
specifying a non-existent keyword creates a new key/value pair,
otherwise the old value is changed. For retrieval, a non-existent key
results in an error.

This rather complex data type encodes a tree of nodes with the
possibility to store a string value at each node. The standard input and
output formats for the full tree are, beginning with the root node, a
nested list of node name, node value, and the children as additional list
elements, where every child node is recursively written as another list of
the same format. Every node may be named, and individual nodes can
be addressed with a name constructed from the names of the nodes
beginning with the root node by concatenating them with a dot as
separator character, such as in root.nodel.node2. Alternatively, names
using the children index number of each node may be used.

This data type is closely related to the tree data type. It encodes query
trees for complex atom and conditions. It is for example used in the
query subfields of the A_SEaRCHINFO and B_SEARCHINFO compound
properties. Here, the inner nodes are logical operators (and, or, not), and
the leaf nodes are property value comparison expressions. An example
for a valid input or output string representation is “and {A_ELEMENT =
6} {or {A _FORMAL CHARGE <> 0} {A SIGMA CHARGE |>=| 0.3}}”,
describing a match condition for a carbon atom which either bears a
formal charge, or an absolute value of the Gasteiger charge of equal to
or more than 0.3.

Compound properties are properties with multiple data fields, where
each data field can have its own type. Typical examples are the standard
properties for spectra which contain many fields in different formats.
This type requires the fields to have property-dependent names.
Individual fields may be accessed by using the field name, or a
numerical index.

Xemistry GmbH © 2002-2024

CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

* structure The data value is a molecular ensemble. Such ensembles are not part of
the normal object set of the scripting environment and may not
participate in datasets or reactions, but otherwise they behave like any
other ensemble and show up in the list of registered ensembles. They
possess property data of their own, have handles and may be
manipulated via these. The value of this data type is the ensemble
handle. This type is not indexible. Ensembles which are property data
cannot be deleted by normal script commands. They disappear only
when the property data they are part of is destroyed.

* reaction Similar to the structure data type, this is a reaction as property data.
Neither the reaction nor its ensembles may be deleted by normal means,
nor are they part of the normal object set of the scripting environment.
This type is not indexible.

dataset Similar to the structure or reaction data types, this is a complete dataset
of ensembles and/or reactions which is property data and not part of the
normal object set of the scripting environment. This type is indexible via
the numerical dataset object list index in a read-only fashion.

table Similar to the chemical object data types, the value of field of this data
type is a table object. It is not indexible, and the value for reading and
setting the property is the table handle.

network Similar to the chemical object data types, the value of field of this data
type is a network object. It is not indexible, and the value for reading and
setting the property is the table handle.

The compilation environment has a mechanism to set up the set of built-in data types at compile
time. For example, the coorvec extension module is often compiled into stand-alone applications.

Property-specific element subscript names

Additional subscript names may be provided by setting the fields property attribute. For example,
atomic 3D coordinates may also be accessed by the indices X, y, and z, as in

atom get Sehandle Slabel A XYZ(x)

which is possible only because the equivalent of the command
prop set A XYZ fields [list “x” “y” “z”]

is executed at start-up. By default, vector types only support numerical indexed access, as in
atom get Sehandle Slabel A XYZ(0)

which is equivalent to accessing the x value.

Bit-based data types, such as the bitset and bitvector types, will also allow the use of the property
enumeration values as field names.

prop create E MYBIT data type bit enum ““none:foo:bar”

will create a bit property, where the lowest two bits are named foo and bar-
ens set $ehandle E MYBIT 1
puts [ens get $ehandle E MYBIT]

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 67

CACTVS Tcl Scripting Introduction

puts [ens get $ehandle E MYBIT (bar)]
ens set $ehandle E MYBIT (bar) 1
puts [ens get $ehandle E MYBIT]
puts [ens nget Sehandle E _MYBIT]

This sequence of commands demonstrates the use of enumeration values for bitsets. First, the
property data instance on the ensemble is set to 1. The retrieval command will return foo as
enumerated value, since only this bit is set. The direct check of the bar bit will report 0. When this
bit is also set, the retrieval result will now be the list “foo bar”, because now both bit 0 and 1 are
set. The numerical value stored in the data slot is now 3, as demonstrated with the last line using the
numerical retrieval command nget instead of get. get will use property enumeration values if they
are specified, while nget outputs simple numbers if the underlying data type is numeric.

Subfield data types

The return value of
prop get A XYZ fields

is a list, where every element is a nested list containing the field name and field data type, in the form
of

{x float} {y float} {z float}

In case of vector types, the field data type is the same as the vector element data type which is already
known to the toolkit and therefore should not be set explicitly to avoid conflicts. For compound
properties, setting the field values is a requirement, though:

prop create E MYDATA data type compound fields {{fieldl int} {field2 blob}}

If the field value types are not set for compound types, they will default to strings.

Properties with polymorphic data types

Computation functions may be coded with introspection capabilities. This means, a computation
function may look at the current data type of the property and provide data in the requested format.

This feature is actually used for some standard properties. Most of the image- and visualization
properties can generate data either as file (data type diskfile), or kept in a memory block (data type
blob). Examples of such properties are b _G1F (dataset depiction), £ BARCODE (barcode data as
image), E_EMF_IMAGE (structure depiction in MS Windows vector formats) E_EPS_IMAGE (structure
depiction in Encapsulated PostScript), E_cIF (structure depiction in pixel formats), £ vrRvL (VRML
3D models) and x_GIF (reaction depiction).

The default format of these properties depends on the toolkit version. Generally, full releases will
use the diskfile data type, while special-purpose development libraries will use the blob type.

In scriptable toolkit versions, the data type may be changed by statements like
prop set E GIF datatype blob
prop set E GIF datatype diskfile

This should be done only once at the beginning at an application script, before any data is generated.
It is possible to work with instances of both data types simultaneously, as will be explained in the
next section, but this is usually very inconvenient and error-prone.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

Changing property data types

In principle, it is possible to change the data type of a property after it has been defined. Chemical
objects which hold property data in the old format remain linked to a temporary version of the old
definition record. The old data type-specific functions are used to manage the property data, thus
objects with old data can be safely deleted, written to file, etc. The old property definition record will
be discarded only if there are no remaining data instances in the system which used the old
definition. However, this old definition is only used for basic property maintenance and retrieval.
All query functions on the data status will use the new definition and potentially return wrong
results. On the scripting language level, the old definition is inaccessible.

When a data type is changed for a property which has a computation function, special care must be
taken to either properly adapt the computation function to use the new data type, or to make sure that
the computation function is never called - for example, by removing the computation function
within the script as in

prop set Stmp changed property compfuncname {}

Reading files which were written with an outdated property definition in an updated environment
can be problematic, especially if drastic changes such as a switch from a numeric type to a string
type were performed. Especially binary formats are prone to crash the application after such a
change. As far as the native CAcTvs binary format is concerned (.cbin files), the following changes
are safe, and everything else is a potential problem:

* Changing the external type without changes of the internal type, for example going from
a short field to an int field.

* Changing the type when incidentally the internal formats have the same layout, for
example going from int to date, or from index to intquad.

* Changing the standard size of any vector, matrix, or volume type. The old data will be
read with the original size.

* Adding fields to compound properties, or reordering them. Deletion of fields is also
possible, but only if the data types of the deleted fields are from the built-in set.

* Renaming enumeration values and other property attributes which only affect output
formatting, but not the internal storage format.

* Changing field names, with the exception of compound properties, where these must not
be changed in order to allow the later addition and reordering of fields.

The CacTtvs scan/query file formats (both sequential and update-able) store definitions of all
properties written to the file which are not in the built-in set, or were modified from the original
definition. When these files are opened, the stored definitions are read back and supersede any
previous definition in the application. An unfortunate side effect is that it is currently not possible
to have two of these files open at the same time which contain conflicting property definitions.

The overall safest way to work with custom property definitions is to set them all up before the first
chemical objects are created which rely on them, and to think carefully before defining them, so that
no data sources with data encoded using conflicting definitions are encountered in a project.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 69

CACTVS Tcl Scripting Introduction

Reactions

Reactions are major objects which control a collection of molecular ensembles as sub-objects. Their
handle has the format reactionx, where x is a number. Any number of reactions may be created.
As standard chemical objects, they may manage their own set of dataset-specific property data. The
prefix for reaction data is “X_". The prefix “R_” is already claimed by ring properties. The generic
command for working with reactions is the reaction command.

Examples:

reaction set $xhandle X IDENT “catalytic reduction”

reaction get $xhandle X IDENT

Creating reactions
Reactions may be created by a number of methods. The supported mechanisms include:

* Decoding of string representations, for example CAcTvs serialized reaction objects and
Reaction SMILES:

set xhandle [reaction create {CC=0.[H] [H]>>CCO}]
set xhandle [reaction unpack S$packstring]
* Input from reaction files:
set xhandle [molfile read “myreactionfile.rxn”]
This method requires that the file contains reaction data, and that the read scope of the file input
handle has been set to reaction. For most file formats which can store reactions this will happen
automatically.
* Script-driven assembly:
set xhandle [reaction create $reagent ehandle $product ehandle]

reaction add $xhandle [list $solvent ehandle “solvent”]

Internal structure of reactions

Reactions contain an arbitrary collection of ensembles as elements. The role of the ensemble is
registered in the property E REACTION ROLE. The predefined roles are reagent, product, solvent,
catalyst, intermediate, impurity, byproduct, agent (unspecified) and undefined. Additional roles can
be created by editing the enumeration values of property E REACTION ROLE:

prop set E REACTION ROLE enum “[prop get E REACTION ROLE enum]:resin material”
Usually, reactions contain at least a reagent and product ensemble, but this is not an absolute

requirement. The order of the ensembles in the reaction is also arbitrary. One should not rely on the
reagent ensemble being the first and the product ensemble being the second ensemble in a reaction.

It is not illegal to have multiple ensembles with the same reaction role within a single reaction,
although for practical purposes this should be avoided.

Finding ensembles with a specific role in a reaction is best done by a filter on E REACTION ROLE:

set reagent handle [reaction ens $xhandle reagent]

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

If there is no reagent ensemble in the reaction, an empty string is returned. An ensemble can only
be a member of a single reaction, or not a member of any reaction. Ensemble membership in
reactions is completely independent of membership in datasets.

The reaction handle can be obtained from an ensemble via a standard cross-referencing operation:

set xhandle [ens reaction S$ehandle]

If the ensemble is not part of a reaction, an empty string is returned.

Reaction substructures

The toolkit supports reaction substructure searching, and SMIRKS transforms. Both require a
reaction where the ensembles are not fully saturated with hydrogens. Such reactions may either be
generated by specifying a decoder option, or automatically by decoding a Reaction SMARTS string
on the fly in the query statement:

set rquery handle [reaction create {[C:1]=[0:2]>>[C:1][0:2] smarts}]
molfile scan $filehandle “reaction >= $rquery handle} reclist

molfile scan $filehandle {reaction >= [C:1]=[0:2]>>[C:1][0:2]} reclist
ens transform S$Sehandle {[C:1]=[0:2]>>[C:1][0:21}

An important features for reaction substructure searches are atom maps. An atom map, which is
stored in property A MAPPING, links atoms on the reagent side of a reaction to atoms on the product
side. In SMARTS/SMIRKS, these are specified by numbers (positive or zero) prefixed with a colon.

A reaction query “c=0>>co” will match any reaction which contain a C=0 group on the reagent side,
and a C-O group on the product side. However, there is no requirement that there was any
transformation of a keto or aldehyde group - this might simply be a match of a reaction structure
which contains un-transformed keto and alcohol groups. Only by forcing the atoms to refer to a set
of atoms linked by common mapping numbers actual reaction searching focusing on changed bonds
can take place.

Reading and writing reactions

Reactions can be read and written to file formats which support the storage of reaction data. This
includes for example MDL RXN files, MDL RD files, the native CAcTvs binary file format (.cbin
standard suffix) and the CAcTvs query-optimized formats (.cbs standard suffix).

Writing to a format which supports reaction storage is simply achieved by passing a reaction handle
as write object. Reaction handles may also be passed to output channels configured to formats which
do not support reaction storage, but in this case the reaction is split into individual ensembles and
multiple records are output. Example:

molfile write myreaction.rxn [reaction create C=0>>CO]

molfile write mydata.sdf [reaction create C=0>>CO]

The first example will write a reaction record, while the second example will write two SD file
records.

When reading data from reaction files, the read scope parameter of the structure file object must be
set correctly. Only if this parameter is set to reaction (and not mol, ens, or dataset), reaction objects
will be read. For most file formats, the scope parameter is automatically set to the most complex data
object contained in the file. For example, RXN files are automatically opened for reaction input, and

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 71

CACTVS Tcl Scripting Introduction

SD files for ensemble input. In most cases, reaction files can also be read on an ensemble level. An
RXN file opened with read scope ens or mol will appear to contain two records:
set fhandle [molfile open mydata.rxn r readscope ens]

set enslist [molfile read S$fhandle {} all]

The ensemble list will contain two ensembles. The file could also be read with two individual
single-recordmolfile read commands. Reaction-level information is of course lost when files are
read this way.

Both RD files and simple cactvs binary files should be opened with explicit read scopes. The
situation is additionally complicated by the fact that both formats could conceivably contain a
mixture of structure and reaction records.

Datasets

Datasets are major objects used to organize collections of ensembles or reactions. Datasets have
handles in the form datasetx, where x is a number. Any number of datasets may be created. As
standard chemical objects, they may manage their own set of dataset-specific property data. The
prefix for dataset properties is “D_". The generic command for working with datasets is the dataset
command.

Example:

dataset set $dhandle D NAME
dataset get $dhandle D _SIZE
dataset get $dhandle D GIF

The example code sets a dataset name, queries the size (number of elements) of the dataset, and
finally generates a panel compound image, where the panel grid is filled with images of the dataset
objects.

Compatibility features

For historical reasons, the alternative name queue for datasets is still supported. This extends even
to the decoding of handles - handle queue0 is equivalent to handle dataset0.

Again for historical reasons, a standard empty dataset dataset(is automatically created when the
toolkit is initialized. This dataset cannot be deleted.

Elements of datasets

Datasets can contain an arbitrary number of ensembles and/or reactions as elements as an ordered
sequence of objects. Datasets which mix ensembles and reactions are possible, but rarely useful.
Currently, an ensemble or reaction can only be a member of a single dataset at any time, or be not
part of any dataset. By default, ensembles or reactions are created or read without being a dataset
member. Ensembles or reactions can be moved between datasets. Many input and creation
commands have optional parameters to identify a target dataset and will deposit the newly created
objects directly into it.

Examples:
set dhandle [dataset create]

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

ens create CCC 1 S$dhandle
molfile read “z.sdf” $dhandle
ens move S$ehandle S$dhandle

ens move S$Sehandle {}

The example sequence shows how to create a dataset, generate an ensemble in a dataset, read a file
directly into a dataset, move an existing ensemble into a dataset and then to remove it from the
dataset again.

Dataset file I/0

When the native Cactvs binary format is used, dataset property data can be stored and retrieved.
Unfortunately, standard chemical exchange formats do not support the storage of global
dataset-level information. The command sequence

molfile write “dataset.cbin” $dhandlel

set fh [molfile open dataset.cbin r readscope dataset]
set dhandle2 [molfile read $fh]

molfile close $fh

first writes a dataset identified by the handle 8dhandliel to the file dataset.cbin. By using the
standard suffix .cbin, the file is automatically set up to use the native CAcTvs binary data format
without the need to explicitly set the file format. The wrife command is supplied with a dataset
handle as parameter. For output to file formats which support dataset-level information storage, this
implies that the dataset-level property data should also be stored, together with the dataset elements.

When the file is later opened for reading, it must be specified that dataset-level input is requested.
The read command will then return the handle of a newly created dataset, which has the dataset
property data from the file, and in addition contains newly created instances of all the original
elements in the dataset (ensembles or reactions) with their original data. If the read scope is not
adjusted to dataset prior to reading, dataset files can still be read as normal structure or reaction files,
returning ensemble or reaction handles as the result of read commands, but the dataset-level
information is ignored.

If the file in the example were a simple SD file, the write statement would write a set of records for
the elements, and the read statement return a dataset with all the original elements, but without the
dataset-level information.

Virtual datasets

The dataset command does not actually need to be used with a proper dataset handle as identifier.
The handle parameter may be replaced by a list consisting of any combination of dataset handles,
ensemble handles, and reaction handles. If the parameter is anything but a single dataset handle, all
specified objects are temporarily moved into a virtual dataset. In case dataset handles are part of the
list, the objects contained in the listed dataset are moved into the temporary dataset, not the dataset
itself.

When the command has finished, the objects are moved back to their original datasets, in their old
position, or reset to their original dataset-less status. A few logical exceptions apply to this rule. For
example, the global move command dataset move will of course let the moved objects remain in

their new destination and not pop them back into their old place as soon as the command finishes.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 73

CACTVS Tcl Scripting Introduction

Examples:
dataset move [list S$ehandlel $ehandle2 $ehandle3] S$dhandle
dataset scan [list $dhandle $ehandlel $ehandle2] “structure >= clcccccl” enslist

dataset get [dataset list] D SIZE

The first example will append the three ensembles to the specified dataset. The second example
performs a substructure search on the combined list of all the elements in the argument dataset and
the two additional ensembles. The third example retrieves the total element count of all datasets.

It is possible to set dataset properties on virtual datasets, but of course this information is
immediately lost when the virtual dataset is destroyed.

Because a ensemble or reaction can only be a member of a single dataset, multiple listings of the
same ensemble or reaction in a virtual dataset list are ignored. The processed virtual dataset contains
these objects only once, at the position of their first listing.

Structure, reaction and dataset file I1/O

The toolkit has an extensive system for intelligent structure and reaction I/O. The central object used
for this purpose is the mo1£ile major object. A molfile object does not necessarily refer to a file
in MDL Molfile format, but can be used to access any identified structure file format.

Opening and closing structure files

Different from other major objects, mol£ile objects always refer to one or more files on the file
system or an in-memory string representation of a file. They not created with null data, but always
refer to some collection of file data. A mo1£ile object is identified by its object handle. The object
remains active until it is closed. After that, the handle becomes invalid, but in most cases, the file it
referred to is preserved.

set fh [molfile open “myfile.sdf”]
molfile close $fh

The molfile close command can close all open structure files by passing the special handle all.

molfile close all

File modes

Molfile objects can be opened in different modes. The default mode is 7, meaning the file is opened
for input at the beginning of the file.

set fh [molfile open “myfile.sdf” r]

The statement above is completely equivalent to the statement five lines above. Other important
modes are w for overwriting and a for appending to the end of a file. File in formats which can be
rewritten on a per-record level without disturbing records behind the rewrite position can also be
opened for update with mode u.

set fh [molfile open “myfile.sdf” w format sdf]

molfile write $fh [ens create CCC]

molfile close $fh

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

The three statements above will write a single MDL SD-file record with the propane molecule to file
myfile.sdf. If the file existed before, it will be overwritten. If the file had been opened with mode a,
the record would have been appended. Opening a file which does not yet exist in mode a is
equivalent to opening it in mode w.

Input file formats and I/0O modules

For input, the format of a file is autodetected. This feature works by looking at data at the beginning
of the file. In case the file cannot be rewound for later reading, the bytes needed for peeking are
internally buffered. Generally, it is not a good idea to specify the file format for input directly. The
format of a file is not determined by looking at the suffix of the filename, but there is a twist
explained below.

File I/O in the CacTvs toolkit is extensible by loading I/O modules. Very few I/O formats are built-in.
In standard configuration of the basic interpreter, these are only the native formats of the toolkit,
SMILES, a couple of MDL formats (sDF, RxN, RDF), and meta formats (mailbox, hitlist). Other
interpreters may have an extended set of compiled-in I/O modules. Nevertheless, most standard
interpreters will load a couple of additional I/O modules at start-up, and these can be used in the
same fashion as built-in modules. The list of auto-loaded I/O modules can be configured in full
toolkit installations by editing the siteconfig/cactvsio file.

When a file is opened for reading, the format detection modules of all loaded I/O modules are
invoked, with the most recently loaded module first and the built-in modules last. If any of the
format detection routines claims it has detected the format, the issue is considered settled and the
selected I/0 module will handle all further I/O to and from this file.

If the file format identification failed, the toolkit will make an attempt to auto-load a suitable I/O
module, if the interpreter has support for loading of dynamic modules. Only in this case is the suffix
taken into account.

set fh [molfile open “result.pdb”]

If the interpreter executing the above statement does not have built-in support for pps files, and the
ppB I/O module is not yet loaded, the interpreter will try to locate the module along its search path,
which can be configured in global variable cactvs (£ilexpath). If the interpreter can find the
module named filex pdb.so or filex pdb.dll (following the platform-dependent naming conventions
of shared libraries, and using the filename suffix as part of the module name), this module will be
automatically loaded, and its format detection routine given a chance to identify the format.
However, if a statement like

set fh [molfile open “result”]

fails, because the file result is of a format which cannot be identified by the built-in and currently
loaded modules, explicit action needs to be taken. In such cases, explicit loading of a suitable file
format can be requested:

filex load pdb
Above statement will load (or reload) the ppB I/O module explicitly. Automatic loading of I/O

modules is an incentive to use standard suffixes. However, as long as the proper I/O modules are
loaded, omitting suffixes or even using misleading suffixes is no problem.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 75

CACTVS Tcl Scripting Introduction

Output file formats

The default format for output files is determined by its file name suffix. If no suffix is provided, the
system default format (usually spF) is used.

If the suffix is not associated with a loaded I/O module, the I/0 module search path is traversed and
the I/0 module automatically loaded, if it can be located on the path, and the interpreter is allowed
to load extensions.

set fh [molfile open “myresult.pdb” w]
Above statement will open a ppB file for writing, if the DB module is loaded, or can be auto-loaded.

However, for output is is customary to specify the format explicitly, if just for resolving suffix use
conflicts. For example, the suffix .mol is not specific for any single format, and the actual format
used depends on which modules are currently loaded.

set fh [molfile open “myresult.mol w format sybyl2]

In contrast, above statement is unambiguous. The syby12 I/O module is automatically loaded if
required and found on the search path. Alternatively, it could be explicitly loaded before executing
the file open statement via a

filex load sybyl2

statement, or, if the module is located in a location outside the standard path, with an extended
command like

filex load sybyl2 /private/modules/filex sybyl2.so

File attributes

Molfile objects have a complex inner structure, and consequently a lot of attributes which can be
queried and set. File attributes can be set by the mol1file open statement, or at any later time set
and queried with the molfile set and molfile get commands. The format pdb and format
syby12 parts of the molfile open statements used in the sample statements in this section are
already examples of file attributes set at the time of opening the file.

set fhl [molfile open infile.pdb r hydrogens add]
set fh2 [molfile open outfile.sdf w format sdf subformat 2D writelist E WEIGHT]

These statements show some typical attributes settings. After the hydrogens add attribute has been
set, a standard set of hydrogens will be automatically added to any structure or other object read
from the input file. The subformat 2D attribute configures the output file to explicitly use 2D
coordinates. They will be computed if not yet present. By default coordinates already present will
have precedence, so if the structures to be written to this file are read from a pps file with atomic
3D coordinates, the written SD file records will have 3D coordinates. The writelist attribute
configures a list of properties to be written as SD data fields. Here, we add molecular weight. The
default data field list is empty, so no SD data fields are written.

Field attributes can also be queried:
set fmt [molfile get $fh format]
set rec [molfile get $fh record]
set line [molfile get $fh line]

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

These sample commands show how to retrieve the file format, the record number (beginning with
1) of the next record to be read or written, and the current line number on the file. With the exception
of the 1ine attribute, these fields can also be set:

set fh [molfile open datafile.sdf]
molfile set $fh record 5
set eh [molfile read $fh]

With this command, the structure read with the mol1file read command will be the one in the fifth
SDF record.

The most often used file attributes are:

° format The file format. Usually set only for output. Useful to query on input
files to learn the actual file format as detected.

° record File record of the next record to be read or written, starting with 1. For
normal files, the record position can be set to arbitrary input locations
anywhere in the file, regardless whether the location has been visited
before or not. In files which cannot be rewound, only forward skipping
is possible. It is possible to set the record position on output files, too.
However, if the file cannot be rewritten in place, or the file mode is not
u, all data behind the new location is deleted.

° line The current line number in the file. After a record has been read, it is the
number of the last line of the record. Binary files count one line per
record. This attribute can be set for bookkeeping purposes, but does not
change the actual file position. A newly opened file reports a line

number of 0.
° eof This attribute is set to 1 if the file reached EOF on input. It cannot be set.
° hydrogens The hydrogen addition mode. The default is asis, meaning that no

hydrogen manipulation takes place on input and output. Other important
modes are add (add standard set), strip (strip all hydrogens except those
usually shown in structure drawings) and stripall (remove all
hydrogens). Note that there are actually two different hydrogen addition
modes, one for output and one for input. The changed or reported
attribute is the one belonging to the current file mode (which could be
changed with amolfile toggle command).

° eolchars The end-of-line characters used for output of ASCII files. The default is
dependend on the platform (17 on Unix/Linux, \¥ on MacOSX, \r\n on
Windows). This attribute does not give information on the type of EOL
character used on input files.

° fields The names and possibly data types and other attributes of data fields.
The exact meaning of this attribute depends on the file format. For SD
files, it is a list of the original names of the SD data fields. For file
formats which can have different data content on every record, such as
SD and RD files, the attribute is updated after each input record, and it
is empty before data has been read. For file formats with a header
detailing the data structure, it is filled when the file is opened. With the
exception of the cBs and BDB file formats, this attribute is intended to be
used for input files only. Setting this attribute does not have any effect

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 77

CACTVS Tcl Scripting Introduction

¢ readflags

® readscope

on output to, for example, an sp or RD file. Please use the writelist
attribute for this function. For cBs and BDB files, setting this attribute
changes the global layout of the file. This is explained in more detail in
the chapter about database files.

This attribute is a list of flags which control various aspects of structure
processing during and immediately after reading, before the handle of
the read object is returned as input result. The most important flags from
a rather extensive list are:

aroresolver: If this flag is set, bond which are marked as aromatic but do
not have a defined Kekulé form are automatically resolved into a Kekulé
structure. A common use for this feature is for reading MDL Molfile
with type 4 bonds, which are only allowed to be used as query bonds, but
are frequently found in registration system data too.

complexresolver: Change the bond type of bonds which cannot be
reasonably represented as standard VB bonds into complex bonds,
which are exempt from bond electron counting. This is the only flag
which is set by default.

fixstereo: Discard wedge bonds on atoms which cannot be stereocenters.
This option requires that hydrogens are added during the read
(hydrogens add attribute).

mergedata: If a file contains multiple instances of a data field, by default
multiple instances of the associated property are attached to the
ensemble or other input objects. For example, an SD file record with two
<mydata> fields will produce an ensemble with properties E_*MYDATA*
and ExmyDaTA* /2. If this flag is set, the data of repeated fields is
appended to the first property instance. The exact meaning of appended
is dependent on the datatype of the property. For the common case of
strings, it is appended at the end, separated by a tab. For vector types,
additional elements are created.

noeof: Ignore EOF indications on the input channel.

noimplicith: Do not assume the file contains implicit hydrogens. With
this option, sMILES data is read in a pseudo-sMARTS fashion, without
added hydrogens. This option has no effect on file formats where atoms
do not possess an implicit hydrogen count, such as MDL Molfiles.
nometal: If this flag is set, assume that the file does not contain metals,
Symbols which look like the element names of metals are instead
interpreted as superatoms, for example A/ for alanine.

This attribute controls the type of object read from an input file. The
default value depends on the format of the input file. For most formats,
it is ens, i.e. the object read is an ensemble. For RrD files, rx files, and
reaction sMILES the default format is reaction. Files with a data
description heade are automatically opened with a read scope matching
the file content (i.e. a BDB reaction file is opened in reaction scope, while
a structure file is opened for structure input). The allowed values of this
attribute depend on the file format. For example, an rRxN file can be read
in mode ens, retrieving one half of a reaction per read. Other modes

Xemistry GmbH © 2002-2024

CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

® subformat

®* writeflags

® writelist

® droplist

® jignorelist

CACTVS Tel Scripting Introduction

which are allowed for specific formats are mol (reading individual
molecules from ensembles and returning them as isolated ensemble
objects) or dataset (retrieving complete datasets as dataset objects with
structure or reaction subobjects, including dataset-level property data).

This attribute identifies various format variants of certain file formats.
It can be both read, after retrieving a file record, or set to influence the
formatting of an output file. The must important subformats are mol2D,
mol3D, and mol0D which can be used to identify or control the type of
coordinate data in MDL, Molfile variants (Molfile, SDF, RXN, RDF).

This attribute is a list of flags which control various aspects of file
output. The most commonly used flag bits, which are specified as a list
of set flags, are:

compute: Attempt to compute properties on in the writelist attribute. By
default, they are only written if they are already valid at the moment of
writing. No error is raised if computation for a listed property fails.
nostereo: Do not output stereo information, even if it is present. This is
for example useful in case a 3D compound with arbitrary, but in reality
undefined stereochemistry is write as a 2D structure.

write0D: Write a 0D record without coordinate information, if the file
format supports this.

write2D: Write a 2D record with atom display information, if the file
format supports this.

write3D: Write a 3D record with atomic 3D coordinatges, if the file
format supports this. The effect of the writexD flags is the same as
setting the corresponding file subformat.

writearo: Write aromatic bonds with an aromatic bond type, even if this
is questionable, such as in MDL Molfiles which should encode a defined
Kekulé structure.

writename: Add the contents of property £ NAME as a name field if this
is optional, for example when outputing SMILES.

This is a list of properties which should be output as additional data
fields, if the file format supports this. However, by default no attempt is
made to actually compute this data. If a property is not present, it is,
dependent on the file format, silently ignored or stored as a NULL value.
Computation can be automatically attempted for all listed properties by
setting the compute flag of the writeflags attribute. Properties which
cannot be output in a file because of restrictions of the file format with
respect to supported datatype or property object associations are also
silently ignored. The default writelist is empty, meaning that no extra
data beyond the minimum defined by the file format is output by default.

This is a list of properties which should not be output, even if present and
listed in the writelist. It effects only file output operations.

This is a property list which affects input only. All properties listed here
are ignored and deleted from the read structure object, even if the input
record explictly contained this data.

This is an example script showing some common uses of file attributes:

Xemistry GmbH © 2002-2024

Cactvs Tecl Scripting Introduction

79

CACTVS Tcl Scripting Introduction

prop set E WEIGHT origname “Molweight”

set fhin [molfile open “infile.sdf” r hydrogens add]

set fhout [molfile open “outfile.sdf” w format sdf writeflags compute \
droplist “Activity” subformat 2D

set eh [molfile read $fhin]

molfile set Sfhout writelist [concat [molfile get $fhin fields] E WEIGHT]

molfile write $fhout $eh

molfile close all

This script converts a (presumably) 3D molecule in file infile.sdf into a 2D record in file outfile.sdf-
All SD data fields in the input file are copied to the output file, except for the field Activity. This is
done by copying the field information from the input file, extracted after reading the current input
record, into the writelist of the output file, but listing the Acitivty field in the droplist. An additional
field for the molecular weight is added, under the field label Molweight, and it is computed if
necessary.

One-shot file command shortcuts

Mostmol£ile subcommands accept, in addition to a file handle obtained from from amol£file open
statement, the name of an existing file. If the resolution of a file handle fails, an attempt is made to
open the identifier as a file for reading, except if the command is an output operation. The write
subcommand opens the file in w (overwrite) mode, while the delete, reorg, rewrite and set
commands open in a (append) mode. If this operation succeeds, a temporary handle is created,
which is automatically released when the command finishes.

Examples:

set eh [molfile read myfile.skc]

set nrecs [molfile count myfile.sdf]

These commands are identical to the sequence

set fh [molfile open myfile.skc]
set eh [molfile read $fh]
molfile close S$fh

set fh [molfile open myfile.sdf]
set nrecs [molfile count $fh]
molfile close S$fh

Here is a very simple output operation:

molfile write out.sdf [ens create clcccccl]

This command creates a single-record MDL Molfile in the current directory, overwriting any
existing file of that name.

Reading structure objects from files

The primary input command is molfile read. It reads the next record from an input file identified
via its file handle and returns an object which corresponds to the current read scope of the file
handle. In most cases, this is an ensemble object. The input objects are allocated and should be freed
if they are no longer needed. Here are some sample commands:

set eh [molfile read “mymol.sdf”]

set xh [molfile read [molfile open “reactions.rdf” r record 2 hydrogens add]]

molfile read “bigfile.sdf” [dataset create] all

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

The first line simply tries to open the file mymol.sdf and reads the first record, without performing
any kind of modification or standardization on the data.

The second example opens a reaction file and positions the read pointer to the second record. In
addition, any object read from the file gets a standard set of hydrogens added. Assuming that the RD
file contains reaction information, and the read scope was thus automatically set to reaction, the
outer molfile read command returns a reaction object.

The third sample line reads the complete file into a dataset object. The optional third parameter of
the molfile read command is a recipient object handle. If, for example, the recipient object is a
dataset, and the objects read from the file are ensembles or reactions, these objects are appended to
the dataset object. It is also possible to specify an ensemble object (if the read scope is ens), or a
reaction object (if the read scope is reaction). In that case, the existing object is cleared, but its
handle reused for the new data. This can be useful in case there are references to an exisiting
ensemble object which are difficult to update. Instead of omitting this parameter, an empty string
may be used.

The optional fourth parameter of molfile read is a record count. Its default value is one. The
special value all can be used to read until the end of the file. In case an explicit record count is used,
the command returns the list of successfully read object as object handles, even if their number is
less than the requested number, provided that at least one object could be read. Otherwise, an error
is raised. The distinction between reaching EOF and encountering an input error is easily made with
code such as
if {[catch {molfile read $fh} ehl} {
if {[molfile get $fh eof]} {
normal eof
} else {
input error

}
}

The molfile hread command has the same syntax as molfile read, but it adds a standard set of
hydrogens to the read objects, without permanently changing the hydrogen addition attribute of the
file. Example:

set elist [molfile hread “myfile.sdf” {} 5]

The code above reads the first five structure records from the file and adds hydrogens to the
ensembles. The return value is a list of five ensemble handles. If the file contained only a smaller
number of records, but at least one record, a shorter object list is returned.

Looping over files

Processing an input structure file from beginning to end is a very common task. It can be done with
code such as this:

set fh [molfile open “bigfile.sdf” r]
while {![catch {molfile read $fh} eh]} {
process structure here ...
now get rid of input object
ens delete $eh
}

if {![molfile get $fh eof]} {
process error

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 81

CACTVS Tcl Scripting Introduction

}
molfile close $fh

Since this is somewhat cumbersome, and due to the commonality of the task, the toolkit has a
convenience function molfile loop. The sequence above can be simplified to
molfile loop “bigfile.sdf” eh {

process structure

}

The first two mandatory parameters of the molfile loop command are the file handle (or a handle
temporarily generated for a one-shot file, as in the example above) and the name of a TcL variable
which will hold the handles of the read objects for use within the body of the function. The last (but
not always third) parameter is the function body. Any number of scripting commands can be put
there.The standard TcL commands break, continue , return and error will work as expected
within the loop body, just as they work in a for or while loop. It is possible to loop over reactions
or datasets if the read scope is set appropriately. The object handle of the current read item is stored
in the variable regardless of its type.

Note that the loop example did not delete the ensemble read from the file. This is done automatically
when the loop body was executed and the loop is prepared to execute the next cycle. Any explicit
deletion of the input object within the loop is silently ignored. The object is undeletable until the
loop body has finished.

The loop finishes silently on EOF. In case an input error is encountered, an error is raised. Thus, no
check for distinguishing EOF from a read error is required. If a loop throws an error, the file is
damaged.

The loop begins at the current record. If the file is not positioned on the first record, it is not rewound.

The maximum number of iterations of the loop can be limited by an optional iteration count
parameter inserted between the storage variable parameter and the function body. A negative value
or an empty string indicates an endless loop.

The command variation molfile hloop takes the same parameters as molfile loop, but
automatically adds a standard hydrogen set to the input objects. Just like the molfile hread
command, it does not permanently change the hydrogen addition attribute of the file.

An example demonstrating a few of the features mentioned in the last paragraphs:

set xh aldol ™%
if {[catch {
molfile hloop reactions.rdf xh 10 {

if {[reaction get $xh X NAME] = “Aldol condensation”} {
set xh aldol [reaction dup $xh]
break
}
}
} msgl} {

puts “read error: Smsg”

}
if {$xh_aldol!=""} {

do something

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

This script searches the first ten records of reaction data file reactions.rdf for a reaction with the
name “Aldol condensation”. Assuming that the RD file contains reactions, the input objects
generated by the loop are reactions with fully specified hydrogens. Regardless how the loop is left,
the loop input object is automatically deleted. So in case you want to export an object from within
the loop, it must be duplicated. The break command exits the loop when the desired reaction was
found. The outer catch command wraps the full loop statement. It is triggered when a read error
occurred, but not if EOF was found, ten records were examined, or the loop left via the break
command. An error message is captured in the msg variable and printed if the catch command
triggers.

The execution of mol£ile loops can be made more robust with two special file attributes which are
only checked within these loops. These readflags attributes flags are supported:

° ignoreempty Empty input records (i.e. ensembles or reactions without atoms) are
silently skipped.
° ignoreerrors If a read error occurs, the defective record is ignored and the loop tries

to resynchronize and continue with the next record. An error is raised
only if the resynchronization fails.

The return value of the mo1£ile loop commands is the number of iterations successfully executed.
Ignored faulty records are not counted.

Example:

set fh [molfile open “big damaged file.sdf” r \
readflags [list aroresolver ignoreempty ignoreerrors]]
set loopcnt [molfile loop $fh eh {
process, ignore problems as much as possible
}]

puts “$loopcount records successfully processed”

Command extensions and modules

The CacTvs toolkit includes a collection of modules which provide additional functionality when
loaded. Some library versions may also contain compiled-in versions of these modules.

Tcl and Tk Packages

All Tcl- and Tk-enabled toolkit versions may load standard Tcl extension packages via the standard
Tcl mechanisms. The Tk toolkit is itself available as a package any may be loaded into any plain
Tcl-enabled script interpreter. The package require command will take care of package
dependencies and automatically load additional packages if required and hide platform specifics
such as the suffix of dynamic link libraries, shared libraries, or bundles.

Examples:

package require Gd
package require Gdbm
package require Tk

load Scactvs(libdir)/libTktable2.8.so0

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 83

CACTVS Tcl Scripting Introduction

Packages usually provide at least one additional command to the interpreter they were loaded into.
By convention, the name of this command is the same as the package name, but spelled in all lower
case.

Example:

package require Gd

set gdhandle [gd create 100 100]

gd rectangle S$gdhandle [gd color new 255 0 0] 0 0 50 50

Packages are automatically located in all directories which are listed in the standard Tcl variable
tcl_pkgPath. This variable may be changed as needed.

Loading a package more than once does not have any effect. Loaded packages are only accessible
in the Tcl interpreter which loaded them. For example, a Tcl interpreter associated with a Tcl
computation function does not have access to the commands of a package loaded by the main
interpreter, if the main interpreter did not explicitly export the commands to the slave.

CAacTtvs Command Extensions

Cactvs command extensions are very similar to Tcl packages. They may even be loaded as such vie
the standard Tcl package or 1oad commands. The only major difference is that they contain a table
with module information in addition to the standard Tcl module initialization functions. If command
extensions are loaded via the emdx load command, this data is accessible and may be queried in
scripts.

Example:

cmdx load stat

puts “Wersion: [cmdx get stat version] by [cmdx get stat author]”

puts “correlation coefficient: [stat r {1 2 3} {5 6 8}1”

Command extensions are located automatically in all file system directories and other places, such

as databases or Web locations, listed in the control variable cactvs (emdxpath) . This path variable
may be changed as needed.

Command extensions are global. Once a command extension has been loaded, it is usable in all slave
interpreters, such as computation interpreters associated with properties.

The Gdbm Module

The Gdbm module is a standard Tcl module. It provides a high-level access to the Gnu Gdbm library.
Because this library is under the GPL (not even LGPL) license, it is only part of selected
distributions.

The module is usually loaded with a package require command:

package require Gdbm

The purpose of the module is working with Gdbm files. Gdbm files are simple keyword/value
storage files with an efficient, hash-based random access mechanism via the keyword, which can be
any string. In principle, these files are comparable to Tcl array variables - but since the content is
held on file, they need far less memory resources.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

A common application example for these files is the storage of large structure collections, without
the overhead of a real database, or a scan file. Structure hashcodes (E_HASHY, E HASHSY, E_HASHTY,
etc.) are useful access keys - but any identifier, such as a record number, £ 1pENT ID string, etc.
works as well. The value part of an entry may be anything, from a complete structure information
(conveniently packaged as pack string - see ens pack command), via a SMILES string (property
E_SMILES) to any kind of other information, such as a compound name.

Examples:
package require Gdbm
set ghandle [gdbm new test.gdb]
set eh [ens create COC]
set hash [ens get $Seh E HASHY]
gdbm insert $ghandle S$hash [ens pack $ehandle]
if {[gdbm exists S$ghandle Shash]} {
set enew [ens unpack [gdbm get S$hash]]
}
gdbm close $ghandle

The access to an opened Gdbm file is performed via a handle. Commands which open or create a
Gdbm file will return a handle, which should be saved and passed to subsequent commands as the
file unidentified. The mechanism is essentially the same as for the toolkit chemistry objects, such
as ensembles, reactions, or structure files. Handles remain valid until the file is closed.

Gdbm files are platform dependent and cannot be opened on a computer with a different byte
ordering. Exchanging these files between e.g. IRIX and Linux computers is not possible. This
limitation is inherent to the file format and not a problem of the toolkit.

The Gdbm module commands are detailed in the reference section.

SQL Expressions

The Cactvs toolkit contains, if the compilation flag for this feature was set, an SQL-compatible
function parser which is used in various contexts. Its most important applications are:

* Function columns in table objects
* Row selection in table objects
e General support for free-form data formatting for chemical objects

The parser is used to evaluate expressions which usually involve property data. The mechanism of
referring to property data is dependent on the context and will be described in more detail below.

Function Syntax

The function syntax follows mostly the expected schemes. Normal operators obey the same
precedence rules as in C. Parentheses may be used to group expressions.

Examples:
1+2*3

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 85

CACTVS Tcl Scripting Introduction

concat (\\a//, ”b”, //C//)

In contrast to standard SQL, case does matter. All function names must be written in lower case.
Property references are written as uppercase strings.

Example:
interval (E_WEIGHT,100,250)

An unusual aspect of the function syntax is that some syntax elements use embedded keywords. In
addition to the function names, these keywords are reserved. Keywords must be separated by
whitespace or punctuation characters from the rest of the expression.

Examples:

substring (“abc” from 1 for 2)
3 in(1,2,3)

(1/0) is NULL

At every stage during the evaluation of an expression, a check is made whether any of the input
parameters for the next step in NULL. If it is, in most cases the full sub-expression will also become
NULL. The meaning of NULL is not an empty string, or a NULL pointer. Rather, it indicates unspecified
or undefined data. Making decisions with undefined data is not possible. A check whether NULL
equals NULL will also result in NULL: Since both comparison values could be unspecified in different
ways, it is not possible to obtain a valid comparison result. However, there are a few functions which
allow the explicit test for NULL values and reacting towards it.

NULL values may for example be encountered by referring to unset table cells if the SQL expressions
are used in a table context.

Example:
ifnull(1/0,9999)

Data types in expressions and functions

The result of a function can only be a signed integer, a double precision floating point value, a date
value, or a string. The result data type is usually determined by the functions use in the expression.
For mathematical expressions, the arguments are automatically adapted. If any element of a simple
mathematical expression is a floating point number, the result will be a float. If a mathematical
expression involves string parameters, an attempt will be made to interpret the strings first as an
integer, and then a float if the string is not a simple integer. An initial integer value may again be
promoted to a float in case it is used in a floating point context. Date values used in a numerical
context will be treated as an integer (internally, dates are stored as seconds since Jan 1st, 1970).

Examples:
1+2.0

will yield a floating-point 3.0 as result, while
1 + ” 2 ”

will yield an integer result of 3.

Numerical values which are passed to functions which expect string input parameters are formatted
as standard integers or %g floating point values and then passed as a string.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

Property values which are used as function or expression arguments are cast to the expected type.
If the property is of a data type which does not provide a suitable cast function to any of the allowed
types, an error results. The use of property subfields as function or expression arguments is
supported.

Example:
set ehandle [ens create {C methane 108-88-3}]
puts [ens expr S$ehandle {concat (’CAS# ’',E NAME(l),’ ’,E WEIGHT) }]

This example first generates an ensemble, using the feature to transfer naming information as part
of the SMILES string. The name, which here is actually a composite of two parts, is automatically
stored as property E NAME as part of the ensemble information. Access to the second word of the
name is possible by means of standard word-based indexing on string data (indices start with 0), and
that data is then concatenated with the leading constant string. A separator space is added, and then
the floating point property value E wEIGHT of the ensemble is cast to a string (after it was computed
on the fly) and appended. The final output of the command is “CAS# 108-88-3 16.0426”.

Using expressions which check for data availability, it is possible to output or import different
property data into a column depending on the circumstances.

Example:
table addcol $thandle function “ifnull (E MDLNUMBER,E COMPANY IDENT)” molid

This example adds a function column to a table. The name of the column is molid. When an
ensemble is later added to the table, it is filled with data from property E MDLNUMBER, if is was
present or could be computed. Otherwise, data from the second property E_CcoMpaNY IDENT, which
could be an in-house identifier, is used. If that identifier is also missing, the table cell receives a NULL
value.

Names of properties or fields/columns may be dynamically constructed by casting a string to a
property or field/column reference:

table sglselect $thandle {property(concat (“E_”,”WEIGHT”)) between 100 and 250}

This example will select all table rows from a table where the ensemble molecular weight of the

entries lies between 100 and 250. If a table column with data of property E WEIGHT exists!?, it is used
for the scan. Otherwise, a check will be made whether the table rows are associated with ensembles
which are still in memory. If that is the case, the weights will be retrieved or calculated from these
ensembles. If the ensembles do not exist any longer, or the data was stored without leaving ensemble
references, the selection function will see NULL values.

Another application area for SQL expressions is data formatting via the expr command of chemical
objects.

For standard ensemble data formatting, it is usually not necessary to use the SQL parser. The
standard formatting capabilities built into Tcl will work as least as well. These expressions develop
more power when used in the context of table function columns and selection functions.

10. This is independent of the column name - we are looking for a column of type property which is linked
to property E_WEIGHT

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 87

CACTVS Tcl Scripting Introduction

Function references to constants and data
These types of data can be used in SQL expressions:

* Integer constants Standard signed numbers.
Example: 999

* Hexadecimal constants These start with a Ox character pair and continue with a
sequence of case-insensitive hex digits (0-9 and a-f). Octal
constants are not supported.

Example: Oxff

* Floating-point constants Floating point constants must contain a decimal point, and
may use an exponent. Usually, it is not necessary to specify
integral floating point values as such, because integers are cast
automatically to floats when required.

Examples:
2., 3.14159, 2.97e6

 String constants Strings are started by either a single or double quote, and
extend until a closing quote of the same type is found which is
not escaped. The escape character is a backslash. The
maximum length of a string is currently 8K. Three-digit octal
escape sequences as well as the standard escapes *\n’, "\t’,
Ar’,’\b’, P\, P\v’ and “\z’ are recognized and decoded.
Multi-line specification of strings with a backslash as last
character on a line is also supported.
Examples:
“Hello World”, ’'”We\tare\tthe\tchampions\n”’

° NULL Of null The function evaluation engine is fully NULL-compliant
according to the standard. Constant NULL values are supported.

° true Or false These are just alternative names for integer constants 1 and 0.

» Uppercase property name Reference to a property attached to the context object. The
context object can for example be an ensemble. The
expression context must match the property object class - it is
for example not possible to refer to an atom property in an
ensemble context. Only native CACTvs property names may be
used, not original names as they were read from a data file. In
order to be able to use property data, the chemical object
providing the data must still be around. In the context of tables
this means that an update of function cells referring to
properties is not possible if the original ensemble or reaction
which provided the data is no longer present and (see below)
there is no data column which holds a copy of the original
ensemble or reaction data.

Example:
E_NAME

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

» Uppercase indexed property Properties may be indexed. In contrast to the standard property

¢ Field name

indexing mechanism in the scripting environment, this index
may be a dynamically evaluated SQL function. If the index is
a constant field name string and not a numerical index, it must
be quoted as a string, which is an important difference to the
standard script indexing syntax. Only native CAcTvs property
names may be used, not original property names as they were
read from a data file.

Examples:
E_NAME (0) , E NAME (1ogl0(10)), E_NAME (“somefield”)

If no reserved function name is detected, and a word in the
input does not match any of the above constants, it is
interpreted as a field name. In a table function or selection
context, a field name is interpreted to refer to the name of a
table column. If a property name was detected, but the object
the expression works on holds the same data already in a field,
the data from the field is used. This means that it is for
example to refer to a property via its name in the context of a
table, if a table column with that data exists, even when the
original ensemble which provided the data for the column
does not exist any longer.

Example:
col5

The names of built-in functions are reserved and cannot be used as field or property names.

Numerical operators

Function operators use the standard precedence rules.

This is the set of built-in operators:

o +

Negation (unary operator)

Addition of numerical data. If any of the arguments is a float, the result
is a float, otherwise an integer.

Subtraction of numerical data. If any of the arguments is a float, the
result is a float, otherwise an integer.

Multiplication of numerical data. If any of the arguments is a float, the
result is a float, otherwise an integer.

Division of numerical data. If any of the arguments is a float, the result
is a float, otherwise an integer. Division by zero yields a NULL result.

Modulo operator on integer data. Floating point values will be cast to
integer. For modulo functionality with floating point conservation, use
the mod () function.

Exponentiation of float data. The result is always a floating point value.

Xemistry GmbH © 2002-2024

Cactvs Tecl Scripting Introduction

89

CACTVS Tcl Scripting Introduction

Boolean operators

o el <=>¢e2 Check whether the values of the expressions are equal. This
comparison operator will return 1 if both values are NULL.

e el=¢2 Check for equality, with type coercion if necessary. NULL is by
definition not equal to NULL.

e el==¢e2 The same as the simple = operator.

e ell=e2 Check for inequality. NULL arguments will always result in a
NULL result.

e el <>e2 The same as the != operator.

e el>e2 Check weather e/ is larger than e2, with type coercion if
necessary.

el <e2 Check weather e/ is smaller than e2, with type coercion if
necessary.

e el>=e2 Check weather e/ is larger than or equal to e2, with type

coercion if necessary.

o el <=e¢2 Check weather e/ is smaller than or equal to €2, with type
coercion if necessary.

* x between / and & Check whether the value of x is between the low and high limit
expressions / and 4. The comparison values will be cast to the
common type. The function may be used with string
arguments. If x is within the range, the result is 1, otherwise 0.

e xin(al,...) If the value of x is equal one of the listed arguments, the result
is 1, otherwise 0. If any of the arguments are NULL, a NULL x
will also be found.

* notel Invert the boolean result of expression e/. Inverting NULL
gives NULL.
o lel This is an alias to the not comparison operator. However, !

may not be used as a replacement for not where not is a
keyword, such is as a not in statement.

° el ande2 Check whether both boolean input values are true. If any of the
input arguments cannot be converted to an integer, or are NULL,
the result is NULL.

e el && e This is an alias to the and comparison operator. However, &&
may not be used instead of and in cases where and is a
keyword, such as in between statements.

e elore? Check whether any of the boolean input values are true. If any
ofthe input arguments cannot be converted to an integer, or are
NULL, the result is NULL.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

el | e2

el xor e2

el Me2

x is not null

x is null

x not between / and /
x notin(al,...)

s like pat [escape c]

s not like pat [escape c]

s regexp pat

s not regexp pat
s rlike pat
s not rlike pat

stremp(sl,s2)

CACTVS Tel Scripting Introduction

This is an alias to the or comparison operator.

Check whether exactly one of the boolean input values are
true. If any of the input arguments cannot be converted to an
integer, or are NULL, the result is NULL.

This is an alias to the xor comparison operator.
Return 1 if expression x is not NULL, 0 otherwise.
Return 1 if expression x is NULL, 0 otherwise.
This is the negation of the between range check.
This is the negation of the in () function.

Check whether string s matches the pattern pat. The pattern is
mostly matched literally and is anchored to the left and right
sides of the string. There are only three characters with special
meaning in the pattern string: _ (underscore) matches one
arbitrary character, and % (percent) matches any number of
characters, including none. The special meaning of these
characters in the pattern can be suppressed be prefixing it with
the escape character, which is a backslash by default, but can
be set by the optional phrase. The escape character may be
escape by itself. The result of this function is a boolean match
result value if none of the input parameters is NULL. The
comparison is case-sensitive.

This is the negation of the /ike pattern match function above.

Perform an extended regular expression match of string s
against regular expression pattern pat. The result is a boolean
match value, or NULL if any of the arguments is NULL. The
comparison is case-sensitive.

This is the negation of above operator.
This is the same as the regexp operator.
This is the negation of above operator.

Compare strings s1 and s2. If s2 is lexicographically larger
than s1, the result is -1. In the opposite case, the result is 1. If
the strings are equal, the result is 0. The comparison is
case-sensitive.

Bit operators

o ~ Bit-inversion (unary operator)
o | Bit-or
c & Bit-and
Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 91

CACTVS Tcl Scripting Introduction

o« A Bit-exclusive or
o << Leftshift
o >> Rightshift (performed on unsigned argument)

All of them are identical to the C language definition, including precedence rules. They are not
standard SQL.

Mathematical functions

This is the set of built-in numerical functions:

* abs(x) Absolute value of float or integer x. The data type is preserved.

* acos(x) Arc cosine of float x. If x is outside the range -1...1, NULL results.

* asin(x) Arc sine of float x. If x is outside the range -1...1, NULL results.

e atan(x) Arc tangent of float x.

 atan(y,x) Arc tangent of y/x, using the signs of both parameters to determine the
quadrant.

° atan2(y,x) Arc tangent of y/x, using the signs of both parameters to determine the
quadrant.

* bit_count(x) Count the number of set bits in x after casting it to an integer.

* Dbitcount(x) This is an alias to the bit_count () function.

e ceil(x) Round float x up to the next integer. The result is an integer.

e ceiling(x) Round float x up to the next integer. The result is an integer.

o clamp(x,/,h) If x is less than /, it will be set to 1. If it is larger than £, it will be set to
h. The function preserves the data type of x.

* cos(x) Cosine of float x.

* deg(x) Convert float x from radians to degrees.

e degrees(x) Convert float x from radians to degrees.

e double(x) Force casting of argument x (can be int, float, string) into a float.

° exp(x) Natural exponent of a float.

* float(x) Force casting of argument x (can be int, float, string) into a float.

* floor(x) Round float x downwards to the next integer. The result is an integer.

° int(x) Force casting of argument x (can be int, float, string) into an integer.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

interval(n,n1,n2,...) Compute the interval index of argument n. If » is smaller than n/, the

irand(x)
irnd(x)
isnull(x)
log(x)
log10(x)
pow(x,y)
power(x.y)
rad(x)
radians(x)

range(x,/,h)

round(x)

round(x,n)

rand()

rand(x)

md()
rnd(x)
sign(x)
sin(x)
sqrt(x)

tan(x)

result is 0. If it is between n/ and n2, the result is 1, and so forth. If n is
larger than any comparison value, the result is the number of comparison
values. All arguments are cast to the type of n. This function can, in an
extension of the SQL standard, used with all data types.

Produce an integer random number between zero and x-1.
This is an alias for the function irand() .

If x is NULL, the result is integer 1, else 0.

Natural logarithm of float x.

Decadic logarithm of float x.

Raise x to the yth power. Both parameters are floats.
Raise x to the yth power. Both parameters are floats.
Convert float x from degrees to radians.

Convert float x from degrees to radians.

Check whether x is between (inclusive) the low and high limits / and 4.
The comparison values will be cast to the common type. If x is within the
range, the result is 1, otherwise 0. This function may be used with string
arguments.

Round float x to the next integer.

Round float x on the nth decimal place. Positive » indicates fractions
after the decimal point, negative x rounds to next 10, 100, etc. A zero n
is equivalent to the single-argument version of this function. If z is equal
to or smaller than 0, the result is an integer, otherwise a float.

Generate a floating point random number between 0 and 1. The random
generator seed is not changed.

Generate a floating point random number between 0 and 1. The random
generator is seeded with integer argument x, and will, on consecutive
calls, return the same sequence of pseudo-random numbers which is
dependent on the seed argument x.

This is an alias for the function rand ().

This is an alias for the function rand (x).

The sign of float or integer x. The result is an integer -1, 0, or 1.
Sinus of float x.

Square root of float x. Roots of negative numbers will yield NULL.

Tangent of float x.

Xemistry GmbH © 2002-2024

Cactvs Tcl Scripting Introduction 93

CACTVS Tcl Scripting Introduction

truncate(x,n)

Same as round(), except that truncation to the smaller absolute value is
performed.

Date and time functions

curdate()
curtime()

current date

current_time

current_timestamp

date_format(f,x)

dayname(x)

dayofmonth(x)
dayofweek(x)

dayofyear(x)
hour(x)
minute(x)
month(x)

monthname(x)

now()

quarter(x)
second(x)

sysdate()

time()

Get the current time as a string in YYYY:mm:dd format.
Get the current time as a string in HH:MM:SS format.

Get the current date as a string in YYY Y-mm-dd format (ISO). This
function does not use parentheses!

Get the current time as a string in HH:MM:SS format. This function
does not use parentheses!

Get the current date and time as a string in YYY Y-mm-dd MM:HH:SS
format (ISO). This function does not use parentheses!

Format the time specification x with a format string finterpreted by the
strftime () C library function.

Get the English day name (Monday, Tuesday,...) from date specification
X.

Get the day of the month (starting with 1) from date specification x.

Get the day of the week from time specification x, using the ODBC
encoding standard with 1=Sunday, 2=Monday, etc. Example:
dayofweek (' 2003-1-1").

Get the day of the year (starting with 1) from time specification x.
Get the hour from date specification x as an integer.

Get the minute from data specification x as an integer.

Get the month number (1...12) from date specification x.

Get the English month name (January, February,...) from date
specification x.

Get the current date and time as a string in YY Y Y-mm-dd HH:MM:SS
format (ISO).

Get the quarter (1...4) from date specification x.
Get the second from date specification x as an integer.

Get the current date and time as a string in YYY Y-mm-dd HH:MM:SS
format (ISO).

Get the current time as number of seconds since Jan 1st, 1970 as an
integer value.

Xemistry GmbH © 2002-2024

CACTYVS Tecl Scripting Introduction

Xemistry GmbH © 2002-2024

° time(x)

* time format(f,x)

* unix_timestamp()

° unix_timestamp(x)

* week(x)

* week(x,mode)

* weekday(x)

° year(x)

* yearweek(x)

o yearweek(x,start)

String functions

° ascii(s)

* bit_length(s)

e char(cl,c2,...)

e char_length(s)

e character length(s)

CACTVS Tel Scripting Introduction

Decode time specification string x and return the value as seconds since
Jan 1st, 1970. The types of dates which can be parsed depend on whether
the toolkit was compiled with Tcl support or not. The toolkit directly
parses a number of standard formats, such as ISO dates and times, but
not any locale-dependent formats such as British/US dates. If the toolkit
is compiled with Tcl as scripting language, the Tcl time/date parser will
be used in addition to the built-in parser. Example: time (- 2003-1-15")
as ISO data will be understood with or without Tcl support.

Format the time specification x with a format string f interpreted by the
strftime () C library function.

Get the current time as number of seconds since Jan 1st, 1970 as an
integer value.

This function name is an alias to the time(x) function.

Get the week number (0...53) from date specification x. The week is
assumed to begin with Sunday.

Get the week number from date specification x. Mode can be one of 0:
week starts on Sunday, week range is 0...53; 1: week starts on Monday,
week range is 0...53; 2: week starts on Sunday, week range is 1...54; 3:
week starts on Monday, week range is 1...54.

Get the day of the week index from date specification x. Here Sunday=0,
Monday=1, etc.

Get the year as integer (including centuries) from date specification x.

Get year and week as a six-digit integer in format YYYYWW from date
specification x. The week begins with Sunday.

Get year and week as a six-digit integer in format YYYYWW from date
specification x. For start value 0, the week begins on Sunday, for value
1 on Monday.

Get the ASCII/ISO code of first character of string s. If the
string is empty, the result is 0.

Get the length of string s in bits. In this implementation, this
is always the number of characters in s multiplied by 8.

Interpret the arguments as ASCII/ISO character codes and

construct a string which is the concatenation of all characters.

Get length of string s.

Get length of string s.

Xemistry GmbH © 2002-2024

Cactvs Tecl Scripting Introduction

95

CACTVS Tcl Scripting Introduction

e color(v,vmin,vmax,ncolorshades,colorl color2,...)
This function will compute a color value and return it as an
X11 color specification in the format #rrggbb. The relative
position if floating-point input value v between the minimum
and maximum values vmin and vmax is computed. If v is
outside the range, it is set to the closest boundary value. The
relative position is then assigned to the corresponding color
spaces from colorl...color2, color2...color3 (if a third color is
specified) and so on. All color spaces have the same width, so
if there are two color spaces, the first color space is used if v,

is between 0 and 0.5, and the second one if it is larger. A new
relative position is then computed within the color space, so if
V,¢;18 0.25 and there are two color spaces, it is placed halfway
into the first color space. Every color space is partitioned into
ncolorshades different shades by linear interpolation of the
RGB values of the corner colours. The corner colours may be
provided as X11 color database names, or in X11 RGB
notation. The final result of the function is the shade in the
appropriate color space v, is positioned on. For a simple

grayshade interpolation, only white and black need to be
passed as corner color pair. For a rainbow scheme, use red,
green and blue as a color triple. This function is not a standard
SQL function.

* concat(s/,s2,...) Concatenate the argument strings. If any argument is NULL, the
result will be NULL.

* concat_ws(sep,si,s2,...) Concatenate the argument strings, and insert the separator
string sep between them. There will be no separator before the
first component string, or after the last. Empty concatenation
strings and NULL strings will be skipped. If the separator is
NULL, the result is NULL. If the separator is an empty string, the
result is identical to the simple concat () function.

e conv(s,fbase,tbase) Convert the string s, which is interpreted as being an unsigned
number in base fbase (an integer between 2 and 36). s may also
directly be provided as a in integer parameter, in which case
the decoder base is ignored. If the first input parameter is a
string, it is decoded with the specified base. A new string with
the value re-encoded in base thase (an integer between 2 and
36) is generated. This function does not provide the full
capabilities of the SQL function, because it currently does not
handle signed numbers. If the target base is 16, and the input
is a string, the string will be (in a diversion from the SQL
standard) encoded as a hex-encoded string.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

e export_set(bits,on,off| ,sep][,nbits])

* find in_set(s,set)

* insert(s,p,/,snew)

* instr(s,substr)

* lcase(s)
* load_file(f)
o left(s,/)

* length(s)

* locate(substr,s)

* locate(substr,s,p)

* lower(s)

Construct a string from a bit-encoded integer value bits. The
encoding starts with the LSB bits, moving upwards. For every
set bit, the on string value is concatenated to the output string
and for every unset bit the off string value. Bit positions in the
output string are separated by a separator string, which is a
comma character by default and may be changed by providing
the first optional parameter. By default, all 32 bit positions of
the standard toolkit integers are processed, but this number
may be adjusted by the last optional parameter. All element
and separator strings may be set to an empty string in order to
omit them.

Try to find string s in a string-encoded set set. Set elements are
separated by a comma. Search string s must not contain
commas. The function returns 0 if the string cannot be found,
or the set is empty, otherwise the set element position starting
with 1. If any of the arguments is NULL, the result is NULL.

Remove / characters from string s, starting at position p (which
begins at 1), and replace the removed sequence with string
snew. If the length / is zero, the new string is simply inserted
at the requested position. A minimal position value of 1 is
silently enforced. Inserting beyond the length of the string is
the same as a simple concatenation.

This is the same function as locate (), but the arguments are
swapped. We love SQL.

Concert string s to lower case.
Load file f'and return its content as a string.

Return the leftmost / characters from string s. If s is shorter
than /, s will be passed unchanged.

Get length of string s.

Locate the position (starting with 1) of the first occurrence of
substring substr in string s. If the substring is not found, 0 is
returned.

Locate the position (starting with 1) of the first occurrence of
substring substr in string s, beginning the search at position p
(also starting with 1). If the substring is not found, O is
returned.

This is an alias for the 1case () function.

Xemistry GmbH © 2002-2024

Cactvs Tecl Scripting Introduction

97

CACTVS Tcl Scripting Introduction

Ipad(s,/,pad) Left-pad string s by repeating string pad until a length of / is
reached. The pad string may be longer than one character, but
then only a part of the pad string may be used. The the string
is already longer than /, it will be truncated. If the pad string is
empty or NULL, a space character will be used for padding.

o ltrim(s) Remove leading whitespace from string s.

* make set(bits,sl,s2...) Construct a string-encoded set by concatenating those element
strings which correspond to set bits in the bits argument with
a comma. The set element strings should not contain commas
themselves. If bit 1 is set, string s/ is used, bit 2 decides
whether s2 is included, and so forth.

* mid(s,p,/) Return / characters of string s, starting with position p (which
begins with 1). If the remaining string after position p is
shorter than /, the rest of the string will be returned. If p is
larger than the string length, an empty string is produced. If p
is smaller than one, it is implicitly set to 1.

* octet_length(s) Get length of string s.

e ord(s) Get ASCII/ISO code of first character of string s. If the string
is empty, the result is 0.

* position(substr in) Locate the position (starting with 1) of the first occurrence of
substring substr in string s. If the substring is not found, 0 is
returned. Note that the parameters are separated by the
keyword in, not a commal

e regsub(s,pat,rpl,all]) Perform a regular expression substitution on input string s. pat
is an extended regular expression which is matched in
case-sensitive fashion. When a match is found, the matched
part of the input string is replaced by the rpl pattern. Within
rpl, the usual regular expression replacement operators & (full
matched string section) and \1...\9 (matched bracketed
sub-expressions of the pattern) are recognized. These
replacement operators may be escaped by a backslash
character in order to prevent their interpretation. By default,
only the first match in the input string is substituted. The
process may be changed to global substitution by passing a
true boolean all parameter as optional argument. The return
value is the substituted string. If no match occurred, the
original string is copied unchanged. This function is not part of
the normal SQL function set.

* repeat(s,n) Concatenate string s # times and return the result. If # is equal
to or less than zero, and empty string is produced. When s or
n are NULL, the result is also NULL.

* replace(s,f.f) Replace all occurrences of substring f'in string s by string 7.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

* reverse(s) Invert the sequence of characters in string s.

* right(s,/) Return the rightmost / characters from string s. If s is shorter
than /, s will be passed unchanged.

* rpad(s,/,pad) Right-pad string s by repeating string pad until a length of / is
reached. The pad string may be longer than one character, but
then only a part of the pad string may be used. The the string
is already longer than /, it will be truncated. If the pad string is
empty or NULL, a space character will be used for padding.

o rtrim(s) Remove trailing whitespace from string s.

* soundex(s) Generate soundex string from input string s. Soundex strings
allow phonetic comparison of (preferably English) words and
phrases.

* string(x) Cast argument x to a string. If x is already a string, the function

does nothing.

* substring(s,p) Get all characters of string s after position p (beginning with
1). If p is smaller than 1, it is silently set to 1. If p is beyond the
length of the string, an empty string is produced.

* substring(s from p) The same as above function, just using the keyword from
instead of a comma as separator.

* substring(s,p,/) This is the same as the mid () function.

* substring(s from p for /) This is the same as the mid () function, but the arguments are
separated by the keywords from and for.

 substring index(s,delim,n) Return the substring of string s before the delimiter character
delim is found abs (n) times. If # is positive, the string is
scanned from left to right, otherwise in reverse direction. If »
is 0, an empty string is produced. If the delimiter is NULL or an
empty string, the result is NULL. Only the first character from
the delimiter string is used.

° trim(s) Remove leading and trailing whitespace from string s.

* trim(r from s) Remove leading and trailing instances of string » from string s.
¢ trim(both from s) Remove leading and trailing whitespace from string s.

¢ trim(leading from s) Remove leading whitespace from string s.

* trim(trailing from s) Remove trailing whitespace from string s.

¢ trim(both » from s) Remove leading and trailing instances of string » from string s.
¢ trim(leading r from s) Remove leading instances of string 7 from string s.

* trim(trailing » from s) Remove trailing instances of string » from string s.

* ucase(s) Convert string s to upper case.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 99

CACTVS Tcl Scripting Introduction

upper(s) This is an alias to the ucase () function.

Context functions

file() Get the name of the file which is currently processed in the expression
context. If no file is process, NULL is returned.

record() Get the current record (file/database context) or row (table context)
number. Numbering begins with 1.

row() This is an alias to the record () function, which is more readable in the
context of table operations.

session_user() Get name of user.
system_user() Get name of user.
user() Get name of user.

Argument selection and flow control functions

al ?a2:a3 Return the second argument if a/ (cast to an integer) is not 0, otherwise
return 3. If al is NULL, the result is also NULL, regardless of the values
of a2 and a3. This is an SQL extension which was modelled after the C
language construct.

case x when ¢/ then r/ [when c2 then 2 ...] [else 99] end
Compare expression value x with the comparison expression values
cl...cn. If any of them is equal to x, the corresponding result value r is
returned. If none is equal, the return value of the optional else part is
returned. If there is no else part, the result is NULL. The comparison
values are cast to the type of x.

case when e/ then I [when e2 then r2...] [else r99] end
This is a variant of the case statement. Here, individual expressions
el...en are evaluated and interpreted as boolean values. If any of them is
true, the corresponding return value is extracted. If none of the
expressions yields a true result, the optional else part is returned, or NULL
if no else part was provided.

coalesce(al,...) Return the first argument which is not NULL with its original data type.
If none of the arguments meets this criterion, NULL is returned.

elt(n,s1,...) If n is 1, the first string argument is returned, the second string if is 2,
and so on. If z is outside the range of supplied strings, the result is NULL.

field(s,s/,...) Return the index (beginning with 1) of the string in the string list
beginning with s/ which is identical to string s. If the first string is not
found anywhere in the list, the result is 0.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

CACTVS Tel Scripting Introduction

* fieldref(x) Force interpretation of string or expression x as a field/column
reference. If the reference cannot be resolved, the result is NULL,
otherwise the field value in the expression context. This is an SQL
extension.

e if(al,a2,a3) If the value of expression a/ is not an integer zero (after casting, if
necessary) and not NULL, the result of expression a2 is passed on, else the
result of expression a3.

e ifnull(al,a2,...) This function passes the first non-null argument expression value on. If
there are no non-NULL arguments, the result is NULL. Standard SQL
provides this function only with exactly two arguments.

* largest(al,...) This is an alias for function greatest().

* least(al,...) Select the smallest argument. The arguments can be either integers,
floats, or strings. If all arguments are integers, the result is an integer. If
any float is used, and no strings are involved, the result is a float and all
arguments are compared as floats. If any argument is a string, all
arguments are converted to strings and case-sensitive string comparison
is used. Note that the min () function an as aggregate function is in a
totally different class and no substitute for this function.

 greatest(al,...) Same as least(), except that the greatest argument is selected instead of
the least.
o nullif(al,a2) If the result of expression a/ is the same as a2, the return value is NULL.

Otherwise, the result of expression a/ is passed on. The comparison
values are cast for comparison if necessary.

° property(x) Force interpretation of string or expression x as a property reference. If
the property name cannot be resolved, the result is NULL, otherwise the
value of the property data in the expression context. This is an SQL

extension.
* propref(x) This is another name for the property () function.
e smallest(al,...) This is an alias for function least ().

Aggregate functions
* average(field) This is an alias for the avg () function.

* avg(field) Get the average of the values of all non-NULL data items in the selected
field. If no such item can be found, the result is NULL, otherwise a float
value. This function can only be used on numerical fields/columns or
strings which can be cast to numbers.

* count(*) Count the number of records or rows in the data object. No object values
are used for the comparison.

 count(field) Count the number of non-NuLL values for the specified field in the data
object.

Xemistry GmbH © 2002-2024 Cactvs Tcl Scripting Introduction 101

CACTVS Tcl Scripting Introduction

* max(field) Get the maximum value among all non-NULL data items in the selected
field/column. If no such item can be found, the result is NULL, otherwise
the minimum value in its original data type.

* min(field) Get the minimum value among all non-NULL data items in the selected
field/column. If no such item can be found, the result is NULL, otherwise
the maximum value in its original data type.

* prod(field) This is an alias for the product () function.

* product(field) Get the product of the values of all non-NULL data items in the selected
field. If no such item can be found, the result is NULL, otherwise a float
value. This function can only be used on numerical fields/columns or
strings which can be cast to numbers.

e squaredsum(field) This is an alias for the sqsum() function.

* sqsum(field) Get the sum of the squared values of all non-NULL data items in the
selected field. If no such item can be found, the result is NULL, otherwise
a float value. This function can only be used on numerical
fields/columns or strings which can be cast to numbers.

* std(field) This is an alias for the stddev () function.

 stddev(field) Get the sum of the squared values of all non-NULL data items in the
selected field. If no two such items can be found, the result is NULL,
otherwise a float value. This function can only be used on numerical
fields/columns or strings which can be cast to numbers.

e sum(field) Sum up the values of all non-NULL data items in the selected field. If no
such item can be found, the result is NULL, otherwise a float value. This
function can only be used on numerical fields/columns or strings which
can be cast to numbers.

Xemistry GmbH © 2002-2024 CACTYVS Tecl Scripting Introduction Xemistry GmbH © 2002-2024

cACLYVo rytnon scripling Jverview

CACTVS Python Scripting Overview

The Cactvs toolkit has both a Tcl and a Python scripting interface. Both interpreters are active at the same
time. It is possible to mix script languages, for example by using Tcl-scripted property computations
with a Python main script, or vice versa.

The capabilities of the Python interface are almost identical to the Tcl version. The only exception are
thread-related commands. Python still does not support effective multi-threading and has severe
limitations on this front, including lack of support fore the use of subinterpreters together with threads.

The Python commands have generally the same syntax has their Tcl equivalents, with the same order of
arguments. In addition, all functions have parameter names, so that it is possible to omit unused
arguments without entering explicit empty place-holders, as in the Tcl interface.

The function or method arguments of the toolkit interface are interpreted in a more lenient fashion than
the standard Python behaviour. As in Tcl, automatic argument type conversion is attempted. Argument
conversions from string into more complex types such as lists or dictionaries parse the simpler Tcl syntax
for the string form of these types, not the corresponding Python string form.

Example: an expected list argument can be passed in as a true Python list, or as string encoded in the
form “a b <”, which is the Tcl form, but not as “[‘a’ ,"b’ ,’c’1” which would be the native Python
string representation. Commands which expect Cactvs object references accept both a native Python
wrapper object, or the string form of the object handle. In any case, this extended argument parsing only
applies to the toolkit-specific commands, not the generic Python commands.

Xemistry GmbH © 2002-2024 Cactvs Python Scripting Reference 103

CACLVO rytnon Scripting Uverview

Major Object Classes

The interface to the major chemistry objects is implemented as classes. The name of the class is the
same as the object name or associated command name in the Tcl interface, except that the first letter
is uppercase. All toolkit functions are located in the pycactvs namespace.

Example: pycactvs.Ens, pycactvs.Molfile, pycactvs.Dataset

The bundled toolkit Python interpreter already imports everything from the pycactvs namespace,
so instead of pycactvs.Ens the class can be accessed in a simpler fashion as Ens. If the toolkit is
used as a loadable Python module, the import is not automatic. In that context, either the fully
qualified class name is used, or an explicit import like

from pycactvs import *

needs to be run.

All class-specific Tcl subcommands are accessed as object or class methods in Python. Class
methods start with an uppercase character, while object methods use lowercase. Except for this
distinction, the method names are the same as the respective Tcl subcommands. Additionally, a
standard Python object constructor is available.

104

CACTYVS Tl Scripting Reference Xemistry GmbH © 2002-2024

cACLYVo rytnon oscripliing vverview

Constructors and Reference Objects

In the Python interface, objects are usually created by constructors, not by create or open object
subcommands. The constructor arguments are the same as the Tcl create/open subcommands.
Example:

e=Ens (“cccccnl”)

s

m=Molfile(“z.smi”,"”"w”)
The return value of the constructor is a reference object. Its print format is the same as a Tcl object
handle, but internally it is a different type of object.

It is also possible to create a reference object for an existing chemistry object via the Ref class
method, which is implemented for all chemistry objects. This method takes a string form of the
object handle, which could for example have been obtained from a Tcl function.

Example:

e=Ens.Ref (“ens0”)

For maximum compatibility with the Tcl syntax, the major chemistry object classes also have
class-level factory methods under the name create (and alias open for mol£ile objects).

Example:
e=Ens.Create(“clnccccl”,”smarts™)

The result from the factory function is exactly the same as from the equivalent constructor.

Xemistry GmbH © 2002-2024 Cactvs Python Scripting Reference 105

CACLVO rytnon Scripting Uverview

Object Deletion

Deleting a reference object does not automatically delete the chemistry object.

Example:

e=Ens (“clnccccl”)
del e

The ensemble persists even in the absence of a reference object. The del command removes the
reference object, but not the underlying toolkit ensemble object. Explicit deletion (or some other
mechanism like with-clauses, see later) is required:

e=Ens (“clnccccl”)

e.delete()

del e

On the other hand, chemistry objects cannot be fully deleted as long as there are reference objects
to them. Reference objects contain an object pointer which must not become invalid. In above
example, using the e variable after the deletion will raise an error, but not crash the application. If
reference objects to invalid chemistry objects are not explicitly deleted, a minimal chemistry object
frame must be retained. This can lead to accidental accumulation of object zombies, which are not
resolved until all references have gone out of scope and are garbage-collected. In extreme cases, this
can lead to memory problems.

In case an object reference is not available, or larger object collections need to be disposed of, all

objects also support deletion via a class function:

Ens.Delete (e, ”ensl”)

Above command deletes the ensemble referenced by variable e, as well and the ensemble which has
handle ens|.

106

CACTYVS Tl Scripting Reference Xemistry GmbH © 2002-2024

cACLYVo rytnon oscripliing vverview

Minor Object References

Atoms, bonds, rings, or network connections and vertices - all examples of minor chemistry objects
which exist only in the context of a major chemistry object such as an ensemble or network - also
use reference objects as access mechanism. Chemistry object methods which return atoms, bonds,
etc. generate minor object reference objects, not simple numeric object labels. Example:

e=Ens (“CCC"”)

alist=e.atoms (filters="carbon”)

print(alist)

print(alist[0] .ens())

The atom list prints as “[1,2,3]”. However, the objects are not integers, but atom references, for
which the default print format is their label value. It is still possible to obtain their referring ensemble
object, which is not possible for the equivalent Tcl result list. Like major object references, minor
object references also block full deletion of the referred major chemistry object until all reference
objects to that chemistry object have been collected. Minor object references can be converted to a
true integer label with the int () function (see paragraph on the numerics protocol).

It is possible to obtain minor object references via a numerical label (or other minor object identifier,
see Tcl documentation of atom atom, bond bond etc.) and the major object reference:

e=Ens (“CCC"”)

a=Atom.Ref (e, 1)

or by the minor object resolution commands of the associated major object:

a=e.atom (1)
a=e.atom(“#2”)

These commands get a reference to the atom with label one, and the third atom (from zero-based
index 2) in the atom list, regardless of its label.

Finally, atom references can be obtained from ensemble references by using a numerical index, but
no other atom identifiers. These are zero-based atom list indices, not labels. The same feature is
supported for vertices of networks. Atom slices can be obtained in the same way, though this is not
that useful in practical applications. It is not possible to get references to other minor objects (such
as bonds, rings, or network connections) via this scheme.

a=e[l]

a=e[1:3]

Minor chemistry references store a state stamp of the major object they refer to. As long as the major
object state does not change (such as by deleting an atom), they can directly access their minor
object via a pointer, without resolving the label. In case of a state change, the label is resolved again.
That operation can fail, for example by the deletion of an atom between the time the reference was
established, and when it is used again.

Minor object references can still be used when there is a mismatch between the referred major
object, and another major object where it is used as an object identifier. An example would be the
an atom reference which represents a structure match on one structure, whereupon it is used to
access an atom with the same label in a template structure. In such contexts, the corresponding atom
in the second structure is automatically and implicitly looked up via the label component. The
reference object remains bound to its original structure.

Xemistry GmbH © 2002-2024 Cactvs Python Scripting Reference 107

CACLVO rytnon Scripting Uverview

Controlling Major Object Lifetimes by means of with Statements

Ensembles, reactions, datasets, tables, networks, molfiles, database connectors, the bitvector objectt
as well as SOAP/XML and JSON parser objects implicitly and automatically support the
__enter_/__exit __ Python object protocol. This means, they can be used in the context of with
statements.

An object defined in the context of a with statement is automatically deleted as soon as the statemens
goes out of scope. This is even true if the statements under the with clause are not fully executed,
for example because an exception is thrown.

Example:

with Ens (“clnccccl”) as e:
print (e .E_WEIGHT)

The ensemble is deleted immediately after the print statement. In case there are other references to
the object outside the with context, the same caveats as for explicit object deletion apply.

108

CACTYVS Tl Scripting Reference Xemistry GmbH © 2002-2024

cACLYVo rytnon oscripliing vverview

Property and Filter References

While properties and filters are not chemistry objects, they use a reference mechanism which is very
similar to that of major objects. Interface commands that return properties or filters return reference
objects, not strings. In interface commands, it is generally possible to use either strings of references
in arguments where filters or properties are expected.

p=Prop.Ref ("E_WEIGHT")

print (p.datatype)

e=Ens (“clnccccl”)

print (e.get ("E_WEIGHT”))

print (e.get (p))

f=Filter.Ref (“carbon”)

print (f.property)

print (e.atoms (“carbon”))

print(e.atoms (f))

Since in many cases there are not many commands to be executed on a filter or property, class
methods which perform routine operations without a reference object are also implemented:
print (Prop.Get (“E_WEIGHT”,”unit”))

Prop.Set (YE_SMILES”, "parameters”, “usearo 0”)

References can also be obtained by means of the definition file input methods, which are
implemented as class methods:

p=Prop.Read (“myprop.xpd”) [1]
f=Filter.Readblob (somexmldata)

These file input commands can read files which contain more than one definition, so the return value
is a tuple where the first item is the record count, and the second value the reference to the first
decoded record. This is the reason for the [1] index of the property reader.

Xemistry GmbH © 2002-2024 Cactvs Python Scripting Reference 109

CACLVO rytnon Scripting Uverview

Property Data Retrieval

All chemistry objects provide the standard set of data retrieval commands, such as get, new, dget,
nget, jget, etc. They are used in the same fashion as the TcL equivalents:

e=FEns (“clnccccl”)

print (e.get (“E_WEIGHT”))

p=Prop.Ref (“E WEIGHT”)

print(e.get (p))

a=e.atom(1l)

print (a.get (“A_ELEMENT"))

In addition, the plain form of the get command is also accessible via a direct attribute access:

print (e.E WEIGHT)

This can also be written like access to a dictionary:

print (e[“E_WEIGHT”])

All standard toolkit property names have been verified to be syntactically compatible with the direct
notation, and changed in case they did not pass the required name syntax check. A couple of

deprecated property name forms remain valid as default alias definitions. These can be used as string
property names in get () or dictionary-style access, but not as direct access attributes.

The use of additional parameters or filters for data retrieval requires the use of full get (and related)
statements:

print (e.get (“A ELEMENT”, “chargedatom”))
print (e.get ("E_SMILES”,None, “usearo 0 unique 1”)
print (e.get (“E_SMILES”, parameters={“usearo”:False, “unique”:True})

The last line is the same command as the one in the preceding line (which follows closely the TcL
standard syntax), just written in a more Pythonic form.

Access to property data fields, special encodings, or other indexing features likewise requires the
use of a full retrieval command, with a few exceptions.

print (e.get (“E_GIF (dataurl)”))

Above statement, which returns the image as a HTML data URL instead of the standard property
data type (external disk file or blob), cannot be written

For vector types, indexing and slicing can be used in a very similar fashion. However, the internal
toolkit indexing include the upper index in a slice, while the Python version does not.

print (e.get (“E_NAMSET (0) "))
print (e.E _NAMSET[0])

The two commands return the same result. However,

print (e.get ("E_NAMSET (0:2) "))

returns names with index 0 up to and including 2 (3 elements), while the Python construct
print (e .NAMESET[0:2])

returns only two names, for indices 0 and 1. The same rules apply to slices of Latinl and Unicode
strings. Note that indexing of strings (but not slicing) in the toolkit accesses words in the strings (the
separator characters are configurable for each property), which is different from simple character
access when using Python element access syntax.

110

CACTYVS Tl Scripting Reference Xemistry GmbH © 2002-2024

cACLYVo rytnon oscripliing vverview

Property data of compound type is a special case. Results are returned as a named tuple, which is
automatically constructed from the property definition. Field in the tuple can be directly accessed
both via index and field name.

print (e.E_BRUNS WATSON DEMERIT)

The Bruns-Watson demerit data consists of two fields: demerit, which contains the overall demerit
score, and features, which is a dictionary of the features which were used in scoring. The keys are
the feature names, the values to individual demerit values. These can all be accessed directly:
print (e.get (“"E_BRUNS WATSON DEMERIT (demerit)”))

print (e.E_BRUNS WATSON DEMERIT[0])

print (e.E_BRUNS WATSON DEMERIT.demerit)

All three commands return the same result. The property data access can be nested.

print (e.E BRUNS WATSON DEMERIT.features[“not enough atoms”])

Xemistry GmbH © 2002-2024 Cactvs Python Scripting Reference 111

CACLVO rytnon Scripting Uverview

Property Data Modification

All access methods to the complete property data content of an object can also be used for setting
property data.

e=Ens (“clnccccl”)

e.set (“E_NAME”, “pyridine”)
e.E NAME = “pyridine”

e[“E _NAME”] = “pyridine”

However, when manipulating individual fields or elements of a property record, only indexing the
property name in a set () command has the desired effect.

e.E NAMESET = (“namel”,”name2”,”name3”)
e.set (“E_NAMESET (1) ”, “name2 new”)
e.E NAMESET[2] = “name3 new”

The last command line fails, while the first two succeed. The reason is that once data has been
exported from the library to Python, after a retrieval command, but before any Python-side indexing
and element access operations, it is stored in these objects and they are decoupled from the original
property data in the library objects. So either the command only manipulates the Python-side
language objects, or the operation even fails because, for example, tuples are immutable.

112

CACTYVS Tl Scripting Reference Xemistry GmbH © 2002-2024

cACLYVo rytnon oscripliing vverview

Retrieval and Modification of Object Attributes

Object attributes can be queried and modified both by explicit get/set functions and by direct
access. This works in thed same fashion both for chemistry objects (ensembles, datasets, etc.) and
auxiliary objects (properties, filters, database connectors, etc.).

Example:

print (Prop.Get (“E_NAME”, “parameters”))

p=Prop.Ref (YE NAME”)

print (p.get (“parameters”))

print (p.parameters)

Prop.Set (YE NAME”, "parameters”, {“pubchemlookup”:True, ”lmchlookup”:False})
p.set (YE NAME”, "parameters”, {“pubchemlookup”:True, "1mchlookup”:False})
p.parameters={“pubchemlookup”:True, “1Imchlookup”:False, “useformula”:True}

All standard object attributes have been checked for syntactic compatibility. In same cases, the
default name was changed during the review to support this. Older attribute names can still be used,
but only within spelled-out get/set commands, where the syntax is more flexible.

Xemistry GmbH © 2002-2024 Cactvs Python Scripting Reference 113

CACLVO rytnon Scripting Uverview

Class Methods as Replacement for Single-Shot Commands

Some of'the Tcl interface chemistry object manipulation commands support single-shot commands.
In these, instead of the object handle identifying the object the command should work on, the
command also accepts simple constructor/create () arguments. Such commands automatically
destroy the object they temporarily create for the execution of the command once it has completed,
even in the contexts of errors.

puts [ens get clnccccl E WEIGHT]
puts [molfile count somefile.smi]
puts [dataset [list $ehl $eh2 $eh3] get D CHEMDRAW PAGE {} {filename mypage.cdx}]

These are all examples of single-shot commands. Because in Tcl the object argument is decoded
anew for every command, and this happens for every subcommand at the beginning of the command
execution, any single ens/molfile/dataset commands supports single-shot operation.

In the Python interface, commands are by default implemented as object methods. The objects
which execute the methods have already been fully decoded (see the paragraph on constructors and
factory class methods). This means, they cannot provide single-shot methods.

These can however be implemented as class methods - at the cost of handling every such command
by a separate function code. For this reason, only the most commonly used single-shot command
variants have been implemented. Their name is the same as the object method name, except that they
begin with an uppercase letter. They accept a simple single constructor argument as the first
parameter, and all subsequent parameters are the same as for the object method. The Tcl examples
from above can be coded in Python as

print(Ens.Get(“clnccccl”,”E_WEIGHT”))
print (Molfile.Count (“somefile.smi”))
print (Dataset.Get ((el,e2,e3),”D CHEMDRAW PAGE”,None, {“filename”:”mypage.cdx”})

The following single-shot class methods are currently implemented for chemistry objects. This list
excludes the Ref () , Create() and Delete() class methods supported for all objects, as well as
Unpack () , Exists (), Defined() and List (). For database connectors and molfiles, the close ()
method is an alias for belete (). These methods are not single-shot commands.

Dataset.Get () and variants Dget (), Jget(), Jnew(), New(), Nget(), Nnew(), Show()
Dataset.Scan ()

Dataset.Transform()

Ens.Get () and variants Dget(), Jget(), Jnew(), New(), Nget(), Nnew(), Show/()
Majorobj.Ldup ()

Majorobj.Lhdup ()

Molfile.Add()

Molfile.Count ()

Molfile.Get () and variants Dget (), Jget(), Jnew(), New(), Nget (), Nnew(), Show/()
Molfile.Fullscan ()

Molfile.Hloop ()

Molfile.Hread()

Molfile.Loop ()

Molfile.Max ()

Molfile.Min ()

Molfile.Peek ()

Molfile.Read()

Molfile.String (), and alias Molfile.Blob()

Molfile.Scan ()

114

CACTYVS Tl Scripting Reference Xemistry GmbH © 2002-2024

cACLYVo rytnon oscripliing vverview

Molfile.Truncate ()
Molfile.Write ()
Reaction.Get () and variants Dget (), Jget (), Jnew (), New(), Nget (), Nnew (), Show /()

Some objects have input class methods, which are also different from single-shot methods. These
are essentially constructors and comparable to the class create () object factory methods.

Dataset.Unpack ()
Ens.Unpack ()
Network.Read ()
Network.Unpack ()
Reaction.Unpack()
Table.Read ()
Table.Readblob ()
Table.Unpack()

Another special case are class methods which modify a collection of minor objects in a single
command:

Atom.Delete ()
Atom.Dup ()
Atom.Hdup ()
Atom.Xdelete ()
Bond.Delete ()
Bond.Xdelete ()

Xemistry GmbH © 2002-2024 Cactvs Python Scripting Reference 115

CACLVO rytnon Scripting Uverview

Pickling and Unpickling

The ensemble, reaction, dataset, table, network and bitvector objects support the standard Python
pickle/unpickle protocol. The data stored is the same as the pack () method with standard

arguments.

Example:

import pickle

with open('pickledstructures','wb') as p:
with Ens('clncceccl') as e:

pickle.dump (e, p)
p=open ('pickledstructures','rb');
e=pickle.load(p):
print (e.E_SMILES)

116 CACTYVS Tl Scripting Reference Xemistry GmbH © 2002-2024

cACLYVo rytnon oscripliing vverview

Object Iterators

The standard Tcl object loop commands (molfile loop, molfile hloop, dataset loop, ens
loop, reaction loop, table listloop, table dictloop, table rownamelistloop, table
rownamedictloop) map to Python syntax only in a very awkward fashion. There is a direct
implementation which accepts the loop body as either as multi-line string, or a function reference.
This is the string code style:

d=Dataset (‘clnccccl’,’clncnccl’)

d.loop(''"'

print (e.E WEIGHT)

''',variable="'e")

That definitely does not look like Python, and in the string loop body indentation must begin with
0, adding another layer of ugliness.

The function style looks much cleaner, but it breaks the program code flow:

def body(e):
print (e.E WEIGHT)

d=Dataset ('clnccccl', 'clncncecl')
d.loop (body)

A much more Pythonic style it the use of iterators. Molfiles, datasets, ensembles and tables can
provide standard Python iterators. These objects acts as their own iterators in the self iterator style.
The dataset loop then looks like:

d=Dataset ('clnccccl', 'clncnccl')
for e in d:
print (e.E WEIGHT)

One important caveat with self-style iterators is that they cannot be nested. At any time, there exists
only a single iterator per object. Using them simultaneously in multiple loops will have unexpected
consequences.

Tables and molfiles offer multiple loop types, but there is only a single iterator. For molfiles, there
is no specific iterator type control. The different effects of the 1oop and hiloop loop styles can be
mirrored in the iterator by setting the hydrogens read attribute appropriately. For tables, the default
iterator style is /ist, i.e. the row content is presented as a tuple. Other table iterator styles can be
configured by setting the iteratorstyle attribute.

tp.iteratorstyle = ‘dict’

Xemistry GmbH © 2002-2024 Cactvs Python Scripting Reference 117

CACLVO rytnon Scripting Uverview

Mapping Protocol Object Functions

All of the chemistry objects support parts of the Python mapping protocol.

Reaction support the len() function, which tells the number of ensembles in the reaction. In addition,
it supports getting and setting object properties and attributes via this protocol, which syntactically
looks like accessing a dictionary:

x=Reaction (“"C=C>>CC”)

x.X NAME="hydrogenation”

print (x.X NAME)

print (x[“X NAME”])

print(len(x))

There is no difference between the two alternative methods. The dictionary style has the advantage
that property and attribute names may be used which cannot be used in direct access due to language
syntax limitations.

Other major chemistry objects use the same data access methods. The only difference is the meaning
of the 1en() function. For ensembles, it returns the number of atoms, for datasets, the number of
objects in the dataset, for molfiles the number of records, for tables the number of rows, and for
networks the number of vertices.

All minor chemistry objects also support the mapping protocol. The length function returns the
number of other minor objects this object links (e.g. the number of bonds in an atom, the number of
atoms in a bond, or the number of atoms in a ring or molecule). Property retrieval and setting via
dictionary-style access is the same as for major objects.

Property and filter references support attribute manipulation, but no 1en() function.

References to structure file I/O modules, table I/O modules, network I/O modules, datatype handler
modules, and database connector modules all support attribute reading in the mapping fashion. Only
the structure file and table I/O modules allow attribute setting.

Bitvectors are another non-chemical object type which support the mapping protocol. All three
functions (length, indexed or sliced value retrieval, indexed value setting) are implemented.

118

CACTYVS Tl Scripting Reference Xemistry GmbH © 2002-2024

cACLYVo rytnon scripling Jverview

Sequence Protocol Object Functions

Datasets and reactions support parts of the Python sequence protocol.

The 1en () associated with the protocol function returns the same values as for the mapping
protocol.

Reactions and datasets additionally support the in test to check whether an object is contained in the
sequence, the access of elements via index or slice, and the += in-place concatenation method. The
latter is the same function as the number protocol function.

d=Dataset (“C=C”,”CC")

eitem=d[0]

print(eitem in d)

etuple=d[0:2]

The code example prints True.

Xemistry GmbH © 2002-2024 Cactvs Python Scripting Reference 119

CACLVO rytnon Scripting Uverview

Number Protocol Object Functions

Several of the chemistry objects have overloaded numerical operators.

Minor Objects only support the int () and £loat () functions. The result is the object label
transformed to the requested simple numerical type:

e=Ens (“clnccccl”)

a=Atom.Ref (e, 1)

print (int (a))

Ensembles provide only the boolean value check. It returns 7rue if the ensemble has atoms, False
otherwise:
if (e):

print (“Ensemble has atoms”)

Reactions also have the boolean value check. It tests whether there are any ensembles in the reaction.
In addition, the operator += and -= can be used to add or remove ensembles from a reaction:
xp=Reaction (“C=C>>C (Br)C(Br)”)

xp += (Ens (“BrBr”),”agent”)

xp -= xp[0]

Above code snippet first creates a reaction, then adds another ensemble with a defined role (see
reaction add command), and finally the reagent ensemble is removed from the reaction.

Datasets have the same three numerical functions as reactions. The += method corresponds to
dataset add.

The boolean test operator for molfiles tests that the file is neither at EOF, or in an error state. The +=
operator is a simple form of molfile write.

The boolean test for tables reports whether there are any rows in the table.
The boolean test for networks tests whether there are any vertices in the network.

Ensembles, reactions and datasets support the standard hash () function. The values are normal
object hash values (E_HASHISY, X STEREO ISOTOPE HASH, D HASHISY) castto the Py hash t type.
On 32-bit platforms, this type has only 32 bits, so the hash value only contains the lower bits.

Ensembles support rich comparison operators, which test for structural identity using stereo/isotope
hash codes and/or substructure match excluding hydrogens.

(“cece”)
e2=Ens (“CC”)
e3=Ens (“C(C)C")
if e2<=el:
print (“is substructure or identical”)
if el==e3:
print (“structures topologically identical”)

el=Ens

Both sample conditions match. While these comparison are convenient to write, they are pretty
expensive if substructure matching is involved. In many cases, direct property data comparison is
preferable for performance.

120

CACTYVS Tl Scripting Reference Xemistry GmbH © 2002-2024

cACLYVo rytnon scripling Jverview

Copy and Deepcopy Support

Ensembles, reactions, datasets, molfiles, tables, networks and the custom bitvector object support
the copy . copy () and copy . deepcopy () methods of the standard Python copy module via built-in
__copy__and __deepcopy _ methods. For toolkit objects, these two methods are functionally
identical. Effectively, all copies of chemistry objects are deep. You always get full ensemble
duplicates, not some ensemble body which refers to the same atoms and bonds as the source
ensemble, which is an encoding scheme not supported by the core library.

Xemistry GmbH © 2002-2024 Cactvs Python Scripting Reference 121

CACLVO rytnon Scripting Uverview

Custom Object Attributes

In the TcL interface, the attributes which can be assigned to and read from objects is a fixed set. It
is not possible to assign custom attributes. Property data is different - as long as there is a suitable
property definition, any number of chemical properties can be attached to an object.

In the Python interface, the default behavior is the same. An error results if an attempt is made to
read or write an undefined attribute. However, major chemistry reference objects carry a dictionary
which can hold private attributes, if this is explicitly allowed. To enable this feature, set

cactvs[“custom python attributes”] = True

After that, statements like
e=Ens (“CCC")

e.mydata = “TopSecret”
print (e.mydata)

will succeed. Since these custom attributes reside on the reference object, not the core library
chemistry object, they are invisible from TcL. Standard predefined attributes will always have
precedence, and it is not possible to use custom attribute names which look like property names.

Once a chemistry object has acquired a Python reference object, this object is re-used when a new
reference object for the same chemistry object is requested while the first reference still exists, by
simply incrementing is usage counter. Custom attributes are thus visible via all references to the
same library object. However, once a reference object has gone completely out of scope, and all its
usage counts decremented, custom attributes set on this item die with it. Requesting a new chemistry
object reference thereafter instantiates a new reference object, with an empty custom attribute
dictionary.

122

CACTYVS Tl Scripting Reference Xemistry GmbH © 2002-2024

cACLYVo rytnon oscripliing vverview

Python Computational Modules

It is possible to define properties which include a computational function written in Python. This
works in the same way as the Tcl equivalent. When saved, the Python script source becomes a part
of'the property definition file. Property computations are executed in a per-property per-thread slave
interpreter (in Python nomenclature, a sub-interpreter) and are thus cleanly isolated from any other
property definition.

p=Prop ('E_MYPROPERTY',datatype='color', functiontype="python',
computefunction='CSgetE MYPROPERTY', functionsource="""

def CSgetE MYPROPERTY (eh) :
eh.E MYPROPERTY = "orange"

)

p.write()

e=Ens ("clnccccl™)

print (e.E_MYPROPERTY)

The property definition written out by the p.write () statement looks something like this (some
standard attributes are omitted):

<?xml version="1.0" encoding="UTF-8" ?>

<!-- Property Definition for Cactvs Chemoinformatics Toolkit written 2019-02-04
19:16:29 -—>

<property name="E MYPROPERTY" objclass="ens" datatype="color"
classuuid="£11796e0-28a8-11e9-9£77-7379%9e9cld6dd"
versionuuid="£11796e0-28a8-11e9-9£f77-7379e9cld6dd">

<version>1.0</version>
<date>2019-02-04 19:16</date>
<author>Wolf-D. Thlenfeldt</author>
<license class="Proprietary"/>
<invalidation>never</invalidation>
<functions count="1">

<function class="compute" name="CSgetE MYPROPERTY" type="pythonscript"
count="1"> -

<! [CDATA[
def CSgetE MYPROPERTY (eh) :
eh.E MYPROPERTY = "orange"
11>
</function>
</functions>
</property>

Computable properties where the compute function is written in Python can be transparently used
in a Tcl main script context, just like Tcl-computed properties are usable from Python.

However: There is one major exception to this. Python computational modules can only be used
from the main thread. Python computation functions (or other property functions, such as data
merging, verification, etc.) cannot be invoked from any secondary threads. This is due to the explicit
non-support of sub-interpreters combined with multi-threading in the current standard Python
runtime, regardless of GIL handling techniques. Still, a property which contains a computational
Python function can still be referred to in secondary threads, as long as no Python function is
implicitly or explicitly called. For example, the property may still be used as a simple definition
template (setting name, data type, etc.) in other threads, so existing data may be recalled, or property
data on objects may be manipulated directly by thread scripts, without calling the native
computation function.

Xemistry GmbH © 2002-2024 Cactvs Python Scripting Reference 123

CACLVO rytnon Scripting Uverview

The same multi-threading limitations apply to any other Python function which could be invoked
from multiple threads. More examples are multi-threaded file scanning with custom match

functions, or dataset-associated object pipeline processing threads attached via the addthread()
method.

124 CACTYVS Tl Scripting Reference Xemistry GmbH © 2002-2024

cACLYVo rytnon oscripliing vverview

Method Documentation

The Tcl commands and subcommands of the toolkit are documented side by side with the Python
equivalent in a single document. Python method and function forms are written in dark gray, while
the Tcl form is written in black. The Tcl form is always listed first.

Object methods start with a single letter, indicating the object type. Class methods start with the class
name. Examples:

a.bonds (?filterset=?, ?mode=?)
Atom.Ref (eref, identifier)

The first is an atom object method, while the second is an atom class method.

Most optional parameters are named in the Python interface. If optional parameter are not used, it
is possible to skip them, usually by passing a None value. Alternatively, arguments after the skip
position can be named. This is standard Python syntax.

)

a.bonds (
a.bonds (“carbon”)
(

(“carbon”, "hydrogen”))
a.bonds (“!'hydrogen”)
f=Filter.Ref (“carbon”)
a.bonds (f)

a.bonds

a.bonds (f,”exists”)
a.bonds (None, “count”)
a.bonds (mode="count”)

These are all valid forms of calling the atom method to get references to the filtered or unfiltered
bonds of an atom (or their counts, or an existence flag).

Xemistry GmbH © 2002-2024 Cactvs Python Scripting Reference 125

CACLVO rytnon Scripting Uverview

126 CACTYVS Tl Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

CACTVS Tcl and Python Scripting Language Reference

The atom Command

The atom command is the generic command used to manipulate atoms. The TcL syntax of this
command follows the standard schema of command/subcommand/majorhandle/minorlabel. For
PYTHON, most commands are object methods.

The pseudo atom labels first or », last or end or $ and random are special values, which select the
first atom in the atom list, the last, or a random atom.

Atoms can also be selected via atom indices (# prefix), atom mappings (" prefix), previous labels
(suffix %) or specific property values.

Examples:

atom get Sehandle 1 A SYMBOL

atom get Sehandle ~1 A SYMBOL

atom get Sehandle #0 A SYMBOL

atom get Sehandle {A LABEL = 1} A SYMBOL
atom hadd $ehandle 2

This is the list of officially supported subcommands:

atom anchormatch

atom anchormatch ehandle label ss ehandle ?ss label? ?matchflags? ?ignoreflags?
?atommatchvar? ?bondmatchvar? ?molmatchvar?

a.anchormatch (substructure=, ?substructureatom=?, ?matchflags=?, ?ignoreflags="?,
?atommatchvariable=?, ?bondmatchvariable=?, ?molmatchvariable=?)

This command is a variant of the atom match command. The difference is that the full substructure

is matched, and not just its first or selected atom. A substructure match anchor between the

command atom and the first or selected substructure atom is enforced (see -anchor option of the

match ss command).

Example:
set eh [ens create CCO]

echo [atom match $eh 3 0O(C) (C)]
echo [atom anchormatch $Seh 3 0(C)C]

The first command matches, because only the first substructure atom is checked. The second fails,
even though the first substructure atom is a match - but then its environment does not fit.

atom angle

atom angle ehandle label label2 label3 ?property?
a.angle (atom2=, atom3=, ?coordinateproperty="7?)

Compute the angle between 3D atomic coordinates stored in a property between the three atom
arguments, which are considered linked in the specified sequence. The source property for atomic
coordinates is by default o_xvz, but another property can be set, which also needs to be an atomic
float vector.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 127

CACTVS Tel and Python Scripting Language Reference

128

The return value is the angle in degrees between the vectors implicitly constructed from the 3D
atomic coordinate of the second atom pointing to that of the first, and from the second atom to the
third. No bonds need to exist between the atoms. All atoms used in a statement must be different,
and possess 3D coordinates initially, or after an automatically started computation of the source

property.

atom append

atom append ehandle label ?property value?...
a.append ({?property:value,?...})

a.append(?property,value, ?...)
Standard data manipulation command for appending property data. It is explained in more detail in
the section about setting property data.

The command returns the first data value.

Example:
atom append $ehandle 1 A SUPERATOMSTRING “ linker”

atom atom

atom atom ehandle identifier

Atom.Ref (eref, identifier)

Standard cross-referencing command to obtain the label (or reference object, for Python) of the
atom as stored in property A _LaBEL. This is explained in more detail in the section about object
cross-references.

Example:
atom atom $ehandle #0

returns the label of the first atom of the ensemble atom list.

atom bondangles
atom bondangles ehandle label ?filterset? ?filtermode?
a.bondangles (?filterset?, ?mode?)

Standard cross-referencing command to obtain the labels or references of the bond angle objects the
atom is participating in. This is explained in more detail in the section about object cross-references.

atom bonds

atom bonds ehandle label ?filterset? ?filtermode?

a.bonds (?filterset?, ?mode?)
Standard cross-referencing command to obtain the labels or references of the bonds the atom is
participating in. This is explained in more detail in the section about object cross-references.

Examples:

atom bonds $ehandle 1
atom bonds $ehandle 1 {1 doublebond triplebond} count

The first example returns all labels of the bonds atom 1 is participating in. The second example
returns the number of double or triple bonds the atom is a part of.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

atom change

atom change ehandle label element ?linkatom? ?removeh?

a.change (replacement=, ?linkatom=?, ?removeh=?)

This command is very similar to the command atom replace. The important difference is that the
element parameter is always interpreted as an element symbol encoding, and not primarily as an
ensemble handle, ensemble handle/molecule label pair or SMILES string.

The rest of the command is explained in the paragraph on atom replace.

Example:

atom change $eh 1 C
atom change $eh 2 Z

The first example changes the atom with label 1 to a neutral carbon atom. Bonds of the old atom 1
are inherited if possible. If this is not possible due to valence violations, an error is raised. The
second example changes an atom to a query specification for an electro-negative element.

atom charge

atom charge ehandle label chargedelta

a.charge (chargedelta=)

Try to change the formal charge A _ForvAL_cHARGE of the atom by the specified amount. The free
electron count A FREE_ELECTRONS is also adjusted, and other charge- or free-electron-dependent
properties on the ensemble are recursively invalidated. Impossible final charge values are rejected.
Ifthe desired charge state can only be reached by deprotonation, this is automatically attempted, and
a bond change property invalidation event is processed.

The command returns the atom label (for TcL) or reference (for PYTHON).

atom create

atom create ehandle ?symbol? ?bondtype atomlabel?...
aref?...)

Atom.Create (eref, ?symbol?, ?bondtype,aref?...)

Atom(eref, ?symbol?, ?bondtype

Create a new atom in the ensemble. By default, the atom is added without any bonds or charge and
the standard set of free electrons. The symbol parameter is usually an element symbol, which is
decoded in a case-sensitive fashion. If it is omitted, an unspecified atom is created. The isotopic
element symbols D and T are recognized and decoded to the corresponding hydrogen isotopes,
setting the o TSOTOPE property.

This command may also be used to add various pseudo and query atoms. Allowable symbols for this
purpose are

° 3DPOINT or DU or BQ for points in 3D space
* poLy for polymers

° EPAIR, EP or LP for lone pairs

* * or ov for an open valence pseudo atom

* ~ for a superatom with a yet undefined identifier string

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 129

CACTVS Tel and Python Scripting Language Reference

130

* Ha for a generic hydrogen acceptor

* HD for a generic hydrogen donor

* a for a query atom which is not hydrogen

* o for a query atom which is a hetero atom (not C or H)

* M for a query atom which is a metal

» 2 for a query atom which can be any atom

* x for a query element list with the halogens

* v for a query element list with the electro-negative elements N,O,Cl,Br
* z for a query element list with the electro-negative elements N,O,F,S,CI,Br,I
* L for a query element list with a yet undefined set of elements

e @ for a delocalization anchor

* R for a query atom of type insulator.

Instead of an element symbol, the periodic system number of an element may also be used,
optionally prefixed with a hash character (#) in SMILES style. Additionally, the standard BEILSTEIN
query atoms, such as ‘[alk]’, as well as CCDC element groups, such as ‘[3a]°, are supported.

If the superatom symbol ~ is followed by more characters, these are copied to the superatom
identifier string (A_SUPERATOMSTRING property). If a known fragment is specified this way, it may
be expanded later.

The command returns the automatically assigned label of the new atom, or the atom reference for
PyTHoN. Note that this command does not require a label parameter, since it creates new atoms.

This command updates the ensemble information and recursively purges information which is
susceptible to atom changes. For atom properties which survive this step, a default value is added,
if the property is not part of the set of properties managed actively by this command, such as the free
electron count and the atom label.

After the atom symbol, an additional sequence of (non-nested) bond type and atom label parameters
may be specified. The recognized bond types are the same as in bond create. Bonds of the
requested type are created and link the new atom to existing atoms in one step. This bond creation
process is limited by the valence restrictions of the involved atoms. Successful bond creation
triggers a bond change property data invalidation event.

The atom create command can also be accessed, for historical reasons, as atom add. This alias is
deprecated.

The return value is the label of the new atom.

Examples:

atom create $ehandle C

atom add $ehandle ?

atom expand $ehandle [atom add $ehandle ~FMOC]
atom create $ehandle N = $al single $a2

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

The first example adds a carbon atom to the ensemble. The second line adds an any query pseudo
atom, which, in the context of a substructure search, matches any atom. The third example adds a
superatom named FMOC in the inner command. Since this is a fragment name the library
understands by default, it may be expanded to the full FMOC fragment with the outer command.
Finally, a nitrogen atom is added and immediately bonded via a double bond to the atom identified
by the label in variable a1, and via a single bond to the atom in a2.

atom defined
atom defined ehandle label property

a.defined (property)

This command checks whether a property is defined for the atom. This is explained in more detail
in the section about property validity checking. Note that this is not a check for the presence of
property data! The ens valid command is used for this purpose.

Example:

atom defined Sehandle 1 A XYZ

checks whether atom 1 is of a type for which o xvz is defined.

The command returns a boolean status value.

atom delete

atom delete ehandle ?label?...
atom delete ehandle all

a.delete ()

Atom.Delete (eref, ?alabel/aref/arefsequence?, ...)
Atom.Delete (aref, ...)
Atom.Delete (eref, Mall”)

Delete zero or more atoms. All bonds which the atoms participate in are also deleted. The electron
counts of surviving atoms participating in deleted bonds are automatically updated. Molecule and
ring information, and other minor object classes under the control of the ensemble major object
which depend on an unchanged atom set are deleted. Any property data which depends on an
unchanged atom set is also invalidated, or, if the property is set up to do so, re-computed.

Note that this command does not delete hydrogen atoms the deleted atoms were bonded to. These
remain in the ensemble as isolated, now unbonded atoms. The atom xdelete subcommand also
deletes these hydrogen atoms.

The special atom label al/ requests deletion of all atoms. Usually, this is equivalent to ens clear.
The return value of the command is the number of deleted atoms.

Example:
atom delete S$ehandle 1

This command is one of few atom subcommands which do not require an atom label. If no label is
given, the command does nothing. This is useful for list expansions where the list might be empty:

eval atom delete $ehandle S$delatomlist
atom delete $ehandle {*}S$Sdelatomlist

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 131

CACTVS Tel and Python Scripting Language Reference

132

atom dget
atom dget ehandle label propertylist ?filterset? P?parameterdict?

a.dget (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The difference between atom get and atom dget is
that the latter does not attempt computation of property data, but rather initializes the property values
to the default and return that default if the data is not yet available. For data already present, atom
get and atom dget are equivalent.

atom deprotonate
atom deprotonate ehandle label ?count?

a.deprotonate (?count=?)

Attempt to remove one ore more protons from the atom, with adjustment of formal atom charge and
processing of appropriate structure change property data invalidation events.

The command returns the atom label (for TcL) or atom reference (for PYTHON).

atom distance
atom distance ehandle label ?labell2? ?property?

a.distance (?atom2=7?, ?coordinateproperty=2?)

Compute the 3D distance between two atoms based on the values of a coordinate property. The
source property for atomic coordinates is by default 2 xvz, but another property can be specified,
which also needs to be an atom float vector.

The command returns the value as a floating point number in the unit of the source property
(Angstrom in case the default A_xvz is used). An equivalent explicit vector arithmetic script is

vec len [vec subtract [ens get $Seh $label A XYZ] [ens get $eh S$label2 A XYZ]]
If a second atom identifier is not specified, or given as an empty string, the result is a nested list of

the distances to all bonded neighbor atoms, regardless of the bond types. Each sublist consists of the
partner atom label and the bond length from the current atom to that neighbor.

In order to obtain the topological distance between atoms, use the atom topodistance command,
or compute property A TOPO DISTANCE.

atom dup

atom dup ehandle ?label list? ?datasethandle? ?position?
a.dup (?dataset=?, ?position="?)

Atom.Dup (eref,aref tuple, ?dataset=?, ?position=7?)

Duplicate zero or more atoms, plus all the bonds existing between them, into a new ensemble. This
command is very similar to ens fragment, and the same caveats about preserved and destroyed data
in the duplicate apply.

By default, the new ensemble is appended to the same dataset as the original ensemble, or placed
outside of any dataset if the input ensemble was not a dataset member. If the optional dataset handle
parameter is specified, the duplicate is directly moved to that dataset. If an empty string is passed,
the duplicate is not made a dataset member, even if the input ensemble is in a dataset.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the ensemble
is inserted at the given position, starting with 0. If the requested position is larger than the current
size of the dataset, the ensemble is appended.

The command returns the handle of the new ensemble object for TcL, or an ensemble reference for
PYTHON.

Example:
set ehfrag [atom dup $eh {*}S$alist]

atom ens
a.ens()

PytHON-only method to get the ensemble reference from an atom reference.

atom exists

atom exists ehandle label ?filterlist?

a.exists(?filters=?)

Atom.Exists (eref, label,?filters="?)

Check whether this atom exists. Optionally, a filter list can be supplied to check for the presence of
specific features. The command returns O if the atom does not exist, or fails the filter, and 1 in case
of successful testing.

Example:

atom exists S$ehandle 99

atom expand

atom expand ehandle label ?Pallowambiguous? ?noimplicith?
a.expand(?allowambiguous=?, ?noimplicith="?)

This command attempts to expand a superatom. A superatom is either an atom for which the atom
type property A_TYPE is set to super (the preferred method), or a standard atom (a_TYPE normal)
with certain property data.

For a successful expansion, the first class of explicit superatoms must have a valid

A SUPERATOMSTRING property value which can be located in the table of known superatom
identifiers. The second class of normal atoms needs a valid A TEXTLABEL property data with a
known superatom identifier in its /abel text field. The use of normal atoms as superatom surrogates
is deprecated.

If the allowambiguous flag parameter is set, superatoms of uncertain status are expanded. Some
superatom names are ambiguous, for example 4/, which may both refer to the element and alanine.
The superatom table protects against unchecked expansion of such atoms by containing an
ambiguity flag which is set in such cases.

By default, the fragments from the superatom table are imported with a full set of hydrogens. If the
optional noimplicith flag is set, only hydrogens which are explicitly spelled out in the superatom
definition are included. For example, superatoms COO and COOH are expanded to the same form
with an acidic hydrogen by default, but if the flag is set, only the second form has it.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 133

CACTVS Tel and Python Scripting Language Reference

134

The command returns 1 if the atom was a superatom and expansion was successful, 0 otherwise. It
may also raise an error if a superatom was found, but expansion failed, for example because of an
illegal bonding situation which does not allow the creation of the required normal bonds to the
expanded fragments.

The expanded superatom and all other atoms in the original ensemble retain their labels.

Only a single level of superatoms is expanded - if the expanded fragment contains another
superatom, it remains in its original form.

Examples:

atom expand $ehandle [atom create $ehandle ~BOC]

This command immediately expands the freshly created BOC fragment. A command sequence like

atom set $ehandle [ens create C 0] A TEXTLABEL (label) COOMe
atom expand $ehandle 1

also works, but is deprecated.

atom expr

atom expr ehandle label expression

a.expr (expression)

Compute a standard SQL-style property expression for the atom. This is explained in detail in the
chapter on property expressions.

atom fill

atom fill ehandle label ?property value?...
a.fill ({property:value,...})
a.fill (?property,value?,...)

Standard data manipulation command for setting data, ignoring possible mismatches between the
lengths of the lists of objects associated with the property and the value list. It is explained in more
detail in the section about setting property data.

Example:
atom fill Sehandle 1 B COLOR red

sets the color of the first bond atom 1 participates in to red.

The command returns the first fill value.

atom filter

atom filter ehandle label filterlist
a.filter(filters)

Check whether an atom passes a filter list. The return value is boolean 1 for success and 0 for failure.

Example:

atom filter $ehandle 1 [list carbon doublebond]

checks whether the atom is a carbon atom with a double bond.

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

atom get

atom get ehandle label propertylist ?filterset? P?Pparameterdict?

a.get (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

Examples:
atom get Sehandle 1 {A SYMBOL A ELEMENT}

yields the atomic symbol and the element number of atom 1 as a list. If the information is not yet
available, an attempt is made to compute it. If the computation fails, an error results.

atom get S$ehandle 1 B ORDER ringbond

will give the bond orders of all bonds of the atom which are ring bonds.

For the use of the optional property parameter list argument, refer to the documentation of the ens
get command.

Variants of the atom get command are atom new, atom dget, atom nget, atom show, atom
sqldget, atom sqlget, atom sqlnew and atom sqlshow.

Further examples:

atom get Sehandle 1 A SYMBOL

atom get $ehandle 1 A FLAGS (boxed)

In the Python case, the first variant accepts property lists/tuples containing string property names
and/or property references, or a string property list in addition to a single property. Property
references can be used instead of strings only in the first variant, both as single arguments or as part
of lists/tuples. Direct indexed access to property fields also requires the first version, as does the use
of filters or specific computation parameters.

atom groups

atom groups ehandle label ?filterset? ?filtermode?

a.groups (?filters=?, ?mode="?)
Standard cross-referencing command to obtain the labels or references of the groups the atom is a
member of. This is explained in more detail in the section about object cross-references.

Example:

atom groups $ehandle 1

atom hadd
atom hadd ehandle label ?filterset? ?flags? ?chargedelta?
a.hadd (?filters=?,?flags=?, ?chargedelta="?)

Add a standard set of hydrogens to the atom. If the filterset parameter is specified, the atom needs
to pass the filter set in order to be processed.

Additional operation flags may be activated by setting the flags parameter to a list of flag names, or
a numerical value representing the bit-ored values of the selected flags. By default, the flag set is

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 135

CACTVS Tel and Python Scripting Language Reference

empty, corresponding to the use of an empty string or none as parameter value. These flags are
currently supported:

* no2dcoords
Do not assign 2D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 2D coordinates. In any case, 2D coordinates are never added when the
ensemble does no already possess valid 2D coordinates.

* no3dcoords
Do not assign 3D coordinates to the added hydrogens, even if the rest of the atoms in the
ensemble have valid 3D coordinates. In any case, 3D coordinates are never added when the
ensemble does no already possess valid 3D coordinates.

* noanions
Do not add hydrogen to atoms with a negative formal charge.

° noatoms
Do not add hydrogen to atoms without any bonds.

* nocations
Do not add hydrogen to atoms with a positive formal charge.

* noelements
Do not add hydrogen if the ensemble consists purely of isolated metal atoms, which
probably represent the material in elementary form, or as an alloy.

° noexcessvalences
Similar to nohighvalences, but hydrogen is not added to any atom which is not in its lowest
standard bonded valence state.

° nofixatomtext
Do not adjust property A_TExTLABEL (if present) by removing references to implicit H from
it on atoms where hydrogen is added. For example, by default “NHCOOEt” becomes
“NCOOQOELt” after adding an instantiated hydrogen to the nitrogen atom. This reduces
confusion on the hydrogen status when rendering all atoms.

* nohighvalences
Do not add hydrogen to atoms which already exceed their lowest standard valence minus
any formal charge. This option only applies to elements which have a defined lowest
standard valence (this is configurable via the element table).

° nomemory
Do not remember the added hydrogen atoms as automatically added. Normally, a flag is
retained as part of the atom information which distinguishes atoms which were added by
automatic processing, such as hydrogen addition, from those which were originally input.

° nometals
Do not attempt to add hydrogen to atoms which are metals (as defined in the system element
table).

* nospecial
Do not perform hydrogen addition to atoms which participate in non-standard bonds (all
bonds with B TYPE not normal).

° keepflags
For expert use only. Do not discard min/max values and property scope flags for atom
properties when hydrogen is added.

136 CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* protonate
Add a single proton to the atom. The charge of the atom is increased, only a single hydrogen
is added regardless of the standard number of missing hydrogens, and this command wi//
issue the standard property invalidation event for atom and bond changes.

* resetmemory
Reset the origin flag described above for all atoms in the ensemble. All current atoms appear
to be part of the original atom set.

If a charge delta parameter is specified, the atomic charge and free electrons of the atom are adapted
accordingly before the hydrogens are added. The manipulation of the charge usually changes the
number of added hydrogen atoms. It is not possible to change the charge in such a way that the
number of free electrons would become negative.

Adding hydrogens with this command, except if the protonate flag is set, is less destructive to the
property data set of the ensemble than adding them with individual atom create/bond create
commands, because many properties are designed to be indifferent to explicit hydrogen status
changes, but are invalidated if the structure is changed in other ways.

The command returns the number of hydrogens which were added.

Example:
set ehandle [ens create FC(F) (F) (F)]

atom delete S$ehandle 1
atom hadd $ehandle 2

transforms tetrafluoromethane to trifluoromethane.

atom hdelete

atom hdelete ehandle ?label?...
atom hdelete ehandle all
a.hdelete ()

Delete zero or more atoms. All bonds which the atoms participate in are also deleted. The electron
counts of surviving atoms participating in deleted bonds are automatically updated. Molecule and
ring information, and other minor object classes under the control of the ensemble major object
which depend on an unchanged atom set are deleted. Any property data which depends on an
unchanged atom set is also invalidated, or, if the property is set up to do so, re-computed.

Additionally, and different from the simple atom delete command, all cut VB valences on the
neighbor atoms which will not be deleted with the same statement are saturated with added
hydrogen atoms. Only the cut valences are treated, this is not necessarily equivalent to a atom hadd
command on the neighbors.

Otherwise, the command performs the same actions as the simple atom delete command.

The all command variants are identical to that of the simple atom delete command since no
neighbor atoms for hydrogenation remain.

The command returns the number of deleted atoms.

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 137

CACTVS Tel and Python Scripting Language Reference

138

atom hdup

atom hdup ehandle ?label list? ?datasethandle? ?position?
a.hdup (?dataset=?, ?position=7?)

Atom.Hdup (eref, aref tuple, ?dataset=?, ?position=?)

Duplicate zero or more atoms, plus all the bonds existing between them, into a new ensemble, and
plug all open valences by adding standard hydrogens. This command is similar to ens hfragment,
and the same caveats about preserved and destroyed data in the duplicate apply.

By default, the new ensemble is appended to the same dataset as the original ensemble, or placed
outside of any dataset if the input ensemble was not a dataset member. If the optional dataset handle
parameter is specified, the duplicate is directly moved to that dataset. If an empty string is passed,
the duplicate is not made a dataset member, even if the input ensemble is in a dataset.

If the duplicate is moved to a dataset, it is appended to the dataset end by default. This happens also
if the position parameter is explicitly specified as end or an empty string. Otherwise, the ensemble
is inserted at the given position, starting with 0. If the requested position is larger than the current
size of the dataset, the ensemble is appended.

The command returns the handle of the new ensemble object for TcL, or an ensemble reference for
PYTHON.

atom hstrip

atom hstrip ehandle label ?flags? ?chargedelta?

a.hstrip(?flags=?, ?chargedelta=?)

This command removes hydrogens from the selected atom. By default, all hydrogen atoms are
removed.

The flags parameter can be used to make the operation more selective. It may be a list of the
following flags:

* deprotonate
Ifthis flag is set, a single proton is removed from the atom. This command variant does issue
a standard atom and bond change property invalidation event, and it always ends processing
after removing the first proton. Proton removal decreases the charge of the atom by one.

* keepalphawedge
Keep hydrogen atoms which are bonded to an atom which is at the tip of a wedgebond. This
flag excludes the case where the bond to the hydrogen atom is the wedge bond - use the
keepwedge flag to cover this case.

* keepisotopes
Keep hydrogen atoms which are isotope labels (including enriched/depleted 1H).

* keeporiginal
Hydrogen atoms which were not automatically added via a hydrogen addition command are
retained. Note that these commands can be run in a mode which does not leave information
about automatic addition - hydrogens added this way do not survive.

* keepprotons
Keep any molecules which consist only of hydrogen atoms (such as protons, hydride anions,
and molecular hydrogen).

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

* keepspecial
If this flag is set, hydrogens which are usually displayed, such as on aldehydes, wedge
bonds, carbon triple bonds or hetero atoms are retained.

* keepwedge
Keep hydrogens which are at the end of a wedge bond, indicating stereochemistry.

* normalize
Normalize the wedge pattern for standard cases, removing excess wedges from hydrogens
if the result structure is still stereochemically defined. Hydrogens which lose their wedge in
this process are no longer protected by the keepwedge flag.

° wedgetransfer
If a hydrogen atom is removed which is at the end of a wedge, the wedge information is
saved by transferring the wedge (changing its up/down status if necessary) to an adjacent,
surviving bond. This flag has no effects if the keepspecial or keepwedge flags are set. This
flag is set by default.

If the flags parameter is an empty string, or none, it is ignored. The default flag value is
wedgetransfer - but the default value is overridden if any flags are set!

If a charge delta parameter is specified, the atomic charge and free electrons of the atom are adapted
accordingly before the hydrogens are added. The manipulation of the charge will usually change the
number of added hydrogen atoms. It is not possible to change the charge in such a way that the
number of free electrons would become negative.

Hydrogen stripping is not as disruptive to the ensemble data content as normal atom deletion, except
in case the deprotonate flag is set. The system assumes that this operation is done as part of some
file output or visualization preparation. However, if any new data is computed after stripping, the
computation functions see the stripped structure, and proceed to work on that reduced structure
without knowledge that the structure may contain implicit hydrogens.

The return value of the command is the number of hydrogens removed.

Example:

atom hstrip $ehandle 1 [list keeporiginal wedgetransfer]

atom hydrogenate

atom hydrogenate ehandle label ?filterset? ?changeset?

a.hydrogenate (?filters=?, ?changeset="?)

Reduce all bonds the atom participates in to single bonds except those excluded by the filter set.
If a change set is supplied, its interpretation is the same as in atom hadd.
The command returns the number of added hydrogens.

Example:

atom hydrogenate $eh 1 {!arobond !ccbond}
This reduces all non-aromatic hetero bonds atom 1 participates in to single bonds.

atom index

atom index ehandle label

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 139

CACTVS Tel and Python Scripting Language Reference

140

a.index ()

Get the index of the atom. The index is the position in the atom list of the ensemble. The first position
is index 0.

Example:

atom index S$ehandle 99

atom invert

atom invert ehandle label

a.ilnvert ()

Invert the stereochemistry at the atom, provided it is an sp3-type atomic stereo center, which
includes those which use an electron pair as pseudo ligand and allenes with an odd number of atoms.
This command updates any atomic stereo descriptors and bond wedges to the ligands if set, but only
compute 2_LaBEL_ STEREO. No check it made whether the atom can physically be a stereo center, but
if the A 1ABEL STEREO descriptor is zero, or describes non-sp3 types of stereochemistry such as
square planar, the command does nothing and returns 0, but will not raise an error. For odd allenes,
bond wedges at the terminal atoms are updated, not those at the center atom.

If stereochemistry was inverted, this command issues a stereo change property invalidation event
and additionally invalidates the A STEREOGENIC and B_STEREOGENIC properties, because the stereo
potential of centers which possess two ligand groups which only differ in stereochemistry may have
changed.

If the command finds a defined stereo center and succeeds in inverting it, it returns 1, 0 otherwise.

atom isotopecheck
atom isotopecheck ehandle label ?extended?

a.isotopecheck (extended=)

Test whether the isotope label of the atom, if it exists, is physically reasonable. The command
returns boolean true if the label is OK, or is not set. If no isotope is set in o 1soToPE, the command
always reports no problems.

By default, a smaller isotope table is used which contains only isotopes which are sufficiently
long-lived to perform chemistry on. These include naturally occurring isotopes as well as isotopes
used for experimental labeling, such as 'T or '4C. If the extended boolean flag is set, a larger table
containing all known isotopes of the elements is used.

The isocheck command is an alias.

atom jget

atom jget ehandle label propertylist ?filterset? ?parameterdict?
a.jget (property=,?filters=?, ?parameters=?)

This is a variant of atom get which returns the result data as a JSON formatted string instead of TcL
or PYTHON interpreter objects.

atom jnew

atom jnew ehandle label propertylist ?filterset? ?parameterdict?

a.jnew (property=,?filters=?, ?parameters=?)

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

This is a variant of atom new which returns the result data as a JSON formatted string instead of TcL
or PYTHON interpreter objects.

atom jshow

atom jshow ehandle label propertylist ?filterset? ?parameterdict?

a.jshow (property=,?filters=?, ?parameters=?)

This is a variant of atom show which returns the result data as a JSON formatted string instead of
TcL or PYTHON interpreter objects.

atom local

atom local ehandle label propertylist ?filterset? ?parameterdict?

a.local (property=,?filters=?, ?parameters=?)

Standard data manipulation command for reading and recalculating object data. It is explained in
more detail in the section about retrieving property data.

Example:
atom local $ehandle 1 A LABEL STEREO

Note that very few computation routines currently support the local re-computation of data - in most
cases, this command falls back to in a global re-computation.

atom match

atom match ehandle label ss ehandle ?ss label? ?matchflags? ?ignoreflags?
Patommatchvar? ?bondmatchvar? ?molmatchvar?

a.match (substructure=, ?substructureatom=?, ?matchflags=?, ?ignoreflags=>?,

?atommatchvariable=?, ?bondmatchvariable=?, ?molmatchvariable=?)

Check whether the selected atom matches a substructure. Only the first substructure atom, or the
atom selected by the substructure label parameter, is tested. The substructure may be part of any
structure ensemble, and even be in the same ensemble as the primary command atom.

The precise operation of the substructure match routine can be tuned by providing a standard set of
match flags and feature ignore flags. The default match flag set has set bits for the bondorder,

atomtree and bondtree comparison features, and an empty ignore set. If a flag set is specified as an
empty string, the default set is used. In order to reset the flag set, an explicit none value must be used.
The bit options of the match flag are explained in the documentation of the match ss command.

The command returns 1 for a successful match, 0 otherwise. If an optional atom, bond, or molecule
match variable is specified, it is set to a nested list of matching substructure/structure atom, bond or
molecule labels (references for PyTHon). If no match can be found, the variable is set to an empty
list. In case only a bond or molecule match variable is needed, an empty string can be used to skip
the unused match variable argument positions.

Example:

set ss [ens create {[F,Cl,Br,I]} smarts]
set a _1s halogen [atom match $Sehandle $label S$ss 1]

atom mol
atom mol ehandle label ?filterset? ?filtermode?
a.mol (?filters=?, ?mode=?)

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 141

CACTVS Tel and Python Scripting Language Reference

142

Standard cross-referencing command to obtain the label (for TcL) or reference (for PyTHoN) of the
molecule the atom is a member of. This is explained in more detail in the section about object
cross-references.

Examples:

atom mol $ehandle 1
atom mol $ehandle 1 heterocycle

The first example returns the label of the molecule. Note that it is possible for pseudo atoms to be
outside of any molecule. In this case, an empty string is returned. The second example returns the
molecule label if the atom is part of a molecule which contains one or more heterocycles. If the
molecule does not contain a heterocycle, an empty string is returned. Note the use of mo!/ in singular
- an atom can only be a member of one molecule, or of none.

atom neighbors

atom neighbors ehandle label ?filterset? ?filtermode? ?sphere? ?allowduplicates?

a.neighbors (?filters=?, ?mode=?, ?sphere=?, ?allowduplicates=?)

This command (which can also be invoked as subcommand neighbours, or ligands) is a
cross-referencing command with some extra options and, in some filter modes, slightly different
behavior than the standard object cross-reference subcommands.

In the simplest case, it returns the labels (for TcL) or references (for PyTHoN) of the immediate
neighbor atoms. A neighbor atom is an atom which is bonded via a standard (covalent, BTYPE VB)
or complex (BTYPE coMPLEX) bond to the originating atom. In case the filter list contains bond
filters, the bond leading to the originating atom must pass the check, not just any bond of the
neighbor atom.

Example:

atom neighbors $ehandle 1 doublebond

returns all neighbor atom labels which are bonded via a double bond. Neighbor atoms which
participate in a double bond with other atoms, but not the originating atom, are not returned.

This command supports special filtermode parameters in addition to the standard set (exists, count,
exclude, include). The notraverse parameter, followed by a list of atom labels in any of the standard
atom specification styles is a list of atoms which are not traversed during sphere expansion. The
bonds parameter, followed by a bit set combination from the allowed values ring, sidechain or
bridge can be used for topological filtering of the traversable bonds. By default, no topological bond
filtering is applied.

Example:

atom neighbors [ens create CC(C)C] 2 {} {notraverse {3 4}} 2

only returns the hydrogen atoms 5, 6, 7 on atom 1, since carbon atoms 3 and 4 are blocked. If the
atoms in the traversal block list are part of the requested sphere, they are listed.

By default atoms in the immediate neighborhood are examined, but this change be changed by the
sphere parameter. The immediate neighbors are in sphere 1 (the default for this parameter), the next
group of atom is in sphere 2, and so on. If the sphere is not 1, the special filtering of bonds is no
longer active and the normal object substitution mechanism for cross referencing is used. When
going beyond the first sphere, it is also possible that an atom may be reached by multiple paths of
the selected length. By default, these atoms are returned only once, but with the last optional

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

parameter this behavior may be changed. A positive sphere value only selects atoms in that sphere.
A negative sphere parameter value returns a list of all neighbors up to and including the sphere
identified by the absolute sphere value.

Example:
atom neighbors $ehandle 1 {carbon aroatom} count 2

counts the number of aromatic carbon atoms in a distance of two bonds.

atom new

atom new ehandle label propertylist ?filterset? P?Pparameterdict?

a.new (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The difference between atom get and atom new is
that the latter forces the re-computation of the property data, regardless whether it is present and
valid, or not.

atom nget

atom nget ehandle label propertylist ?filterset? ?parameterdict?

a.nget (property=,?filters=?, ?parameters="?)

Standard data manipulation command for reading object data. It is explained in more detail in the
section about retrieving property data.

For examples, see the atom get command. The difference between atom get and atom nget is
that the latter always returns numeric data, even if symbolic names for the values are available.

atom paths

atom paths ehandle label targetlabel ?minlength? ?maxlength? ?filterset?
?atomproperty? P?maxpathcount? ?flags?

a.paths (target, ?minlength=?, ?maxlength=?,?filters=?, 2atomproperty="7?,
?maxpathcount=?, ?flags="?)

This command finds all paths between a pair of atoms, walking along bonds of the types which

define molecules. By default, these are bond types normal, complex and 3center, but this can be

changed by modifying the control variable ::cactvs(molecule _bond set).

The return value of the command is a nested list, even it only a single path is found. Every sublist
contains all the labels (for TcL) or references (for PYTHoN) of the atoms in a single path, including
those of the start and end atoms. Every bond is used only once in any path, and no path crossings
through an atom are allowed. Every atom, with the possible exception of path end points, appear
only once in any single path. Paths from an atom via some bonds back to itself are allowed. The atom
must be a ring member for such paths to exist.

If the destination atom is specified as an empty string, all possible paths emerging from the source
atom and not violating any other specified constraints are returned. This includes shorter sub-paths
which are contained in a longer paths - these are reported as separate result items.

By default, all paths of length greater than zero are returned. The lengths of acceptable paths may
be specified by the optional parameters. If only the minimum length is set, this value is also used

Xemistry GmbH © 2002-2024 Cactvs Tcl and Python Scripting Reference 143

CACTVS Tel and Python Scripting Language Reference

144

for the maximum length, resulting in only paths of a specific length to be reported. The maximum
path count parameter can be used to limit the number of paths found. However, the order of the
found paths does depend on the arrangement of the atoms in the bonds, so it is generally not canonic.
Omitting this parameter or setting it to a negative value disabled the maximum path count check.

A non-empty filter set can be used to restrict the atoms that are eligible to be part of the path.
Normally, these are atom filters, such as /hydrogen, but other types may be used in special
circumstances. Bond filters are however applied to the union of all bonds of an atom, not just the
specific bond traversed in a path. For example, a doublebond filter lets an atom pass if it participates
in any double bond, and does not necessarily mean the bond the atom was reached over in the path.
Filters are not applied to the start atom of the path.

The default report value for an atom is its label, i.e. property o 1aBEL. However, any other present
or computable atom property may be specified instead with the optional atom property parameter.
The parameter may also refer to a property field in case the property is indexible.

The final optional flag parameter is a list of additional keywords which further modify the path atom
selection and result reporting. Currently, the following keywords are recognized:

* noringchaincrossing
The path may not jump from a chain atom to a ring atom, or vice versa

° concatenate
The report format for each individual path is not a Tcl list, but a string where the report atom
property values are directly concatenated

e printbondorder
Every report value after that of the first path atom is prefixed with a character indicating the
bond order from the set “-=#& ~ for bond orders one to four, with a colon for aromatic
bonds, and a question mark for non-VB bonds. Additionally, a @ is added if the bond closes
a ring to the first path atom.

Example:

atom paths [ens create CI1CCCl] 1 1

reports the paths {1 234 1} and {1 4 3 2 1}, which correspond to walking the ring clockwise and
counter clockwise, respectively.

atom paths [ens create CC=C] 1 3 3 3 {} A ELEMENT -1 {printbondorder concatenate}
returns {6-6=6}.

atom pis

atom pis ehandle label ?filterset? ?filtermode?

a.pis(?filters=?, ?mode=?)

Standard cross-referencing command to obtain the labels or references of the 1 systems the atom is
a member of. This is explained in more detail in the section about object cross-references.
Examples:

atom pis $ehandle 1

Get the labels of the & systems the atom is participating in. T systems are a rather exotic feature and
not commonly used. These are essentially descriptions of bonding interactions which use p or d

CACTYVS Tcl and Python Scripting Reference Xemistry GmbH © 2002-2024

CACTVS Tel and Python Scripting Language Reference

orbitals, such as in standard covalent multiple bonds. A simple double bond is described with one
o system and one 7 system in this representation.

atom protonate

atom protonate ehandle label ?count?

a.protonate (?count=?)

Attempt to add one ore more protons to the atom, with adjustment of formal atom charge and
processing of appropriate structure change property data invalidation events.

The command returns the label (for TcL) or reference (for PyTHoN) of the atom.

atom purge
atom purge ehandle label propertylist/stereo/isotope/query

a.purge (propertylist/stereo/isotope/query)

Reset existing property data on an atom. In case the argument is a list of property names, the value
on that atom only is reset to the default value of the property. In case the property is not present on
the ensemble, the command is ignored. The reset via a property list does not trigger a property
dependency update. If that is desired, an ens taint command must be explicitly scripted.In case
a reset property is a bond property instead of an atom property, the reset is executed for all bond
atoms. Other property object class mismatches are currently not supported.

In addition to standard properties, several special pseudo property names are recognized.

The stereo code resets all atom-centered stereo information on the atom, including wedges in
property B_FLAGS that point to the atom, and will trigger a stereo change event on the ensemble
which may invalidate additional data.

The isotope code resets property 2 1s0TOPE on the atom, marks the isotope data as tainted and runs
a data dependency check.

The query code resets property o QUERY, marks the query data as tainted and runs a data dependency
check.

The command return